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Abstract

Rendering visually convincing and realistic images requires accurate lighting computation. Path tracing [Kaj86]
has long been used in offline rendering to achieve this goal. Recent graphics processing unit (GPU) advance-
ments and new sampling algorithms enable path tracing in real-time. This thesis investigates whether real-time
path tracing on commodity hardware is feasible for the current generation of video games. We integrate
and evaluate a real-time path tracer into an existing game engine and provide an in-depth investigation of
performance and memory measurements. Our case study is done with Anno, a state of the art city building
game series that renders large and highly dynamic user-built scenes. We present an efficient hybrid rendering
pipeline able to compute path traced indirect lighting in real-time within the memory limits of consumer
hardware. To solve observed performance and memory issues, we contribute two novel path tracing methods:

Light path guided culling (see section 3.3.2) tracks the number of light paths passing regions of the scene.
The information is used to only selectively build and maintain the required parts of the scene representation in
graphics memory. This technique allows for increased visual quality, improved performance, and significantly
reduced memory consumption compared to existing simple heuristics for partial scene representation. This
generic method can be combined with various kinds of hardware accelerated ray tracing methods.

Stochastic vegetation ray skipping (see section 3.4) is employed to allow fast ray tracing in scenes with
high amounts of vegetation. We present a method employing hybrid rendering, relying on rasterization for
primary rays and direct lighting where possible, and a heuristic utilizing ray skipping through entire vegetation
instances to speed up indirect lighting computation. This method provides ray tracing speedups of factors
greater than two for vegetation-heavy scenes and proves crucial to achieving real-time performance.
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1 Introduction

Figure 1.1: Differently shaded Sponza [Int22] scene with added reflective curved surfaces.
Left: Approximating indirect diffuse lighting with a trivial position-independent term
Middle: Ray traced ambient occlusion (AO), correctly computing light coming from the sky.
Right: Fully path traced image showing accurate indirect lighting.

The field of computer graphics has seen massive improvements over the last decades, especially in the area of
real-time rendering for games. Rendered graphics are getting more realistic and expressive, while new targets
for frame rates and therefore perceived smoothness are achieved at the same time. In practice, systems have
to find trade-offs between visual quality and performance. Memory consumption is also a limiting factor.
In the context of games, this thesis defines “real-time rendering” to have a target of at least 30 frames per
second (fps), since lower framerates have been shown to significantly reduce the immersion due to input
latency [WB00].

To deliver high fidelity as quickly as possible, massively parallel processors in the form of graphics processing
units (GPUs) were developed specifically for 3D rendering and games. To optimally parallelize computation,
rendering techniques for games are traditionally based on rasterization [Gha+89] and therefore deviate
significantly from more realistic offline (i.e. less time-critical) renderers. Lighting results are often crude
approximations of the physically based principles of light transport. The more accurate techniques deployed
in offline renderers usually rely on path tracing [Kaj86], in which entire light paths are traced for multiple
bounces through the scene. To compute interactions between light paths and scene objects, ray tracing
determines the intersection points. This technique has a higher computational cost factor and is harder to
parallelize efficiently. Therefore, it has rarely been used in interactive rendering.

The ever growing complexity of GPUs and advancements in hardware accelerated ray tracing [Wym+18;
HBW20] in recent years now allow the utilization of ray tracing techniques to greatly increase lighting quality
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even in real-time renderers. But even when applying techniques such as ray traced shadows [BWB19], ambient
occlusion (AO) [Bav+18], global illumination (GI) [Hal+21; Ouy+21], or reflections, many corner cases
exhibiting incorrect lighting can still be observed. Path tracing solves these limitations by tracing rays through
the scene for all lighting calculations in a physically-motivated manner. Therefore, it can capture complex
visual phenomena such as light paths from arbitrary light sources with both diffuse and specular bounces.
See figure 1.1 for a comparison between a simple indirect lighting approximation, ray traced AO and a fully
path traced image.
Together with advancements in sampling strategies [Bit+20] and denoising [Sch+17; Zhd21], using path
tracing in a real-time context such as a game engine becomes potentially possible [Sch19; Str23; Bur23a].
However, there are numerous challenges when adapting an existing real-time renderer to a path traced one,
as the context offers many constraints.

Hypothesis: On modern consumer-grade GPUs, path tracing can be employed to shade the highly complex,
dynamic scenes rendered in the current generation of video games, even with user-generated worlds and
without the option of pre-processing scenes. There are various technical challenges, especially when the
graphical assets and effects are not authored for a path traced pipeline, but they can be sufficiently solved.
Techniques and optimizations balancing correctness, visual quality, tracing time, and memory consumption
can be applied to completely replace legacy lighting approximations with path tracing.

In this thesis I use “we”, as is common in English scientific literature, to present my work. We will explore
techniques to allow fast and memory-efficient path tracing of complex and highly dynamic scenes. There will
be in-depth examinations of specific situations that are hard to solve with real-time path tracing, including a
discussion of possible solutions. To investigate scalability in representative contemporary game scenes and
deal with the challenges of user-generated game worlds that do not allow any pre-processing, we will integrate
a fully path traced renderer into the existing game engine of the Anno series [Ubi23] and present methods to
achieve real-time performance. We intend to use existing hardware-accelerated ray tracing implementations
and aside from our minimum target of 30 fps on current hardware, our goal is to keep memory requirements
within the limits of typical gamer commodity hardware.

Chapter 2 will outline the basic concepts of path tracing and related work which will provide the required
background for the subsequent chapters of the thesis. After discussing various challenges to implementing
real-time path tracing in section 3.1, we describe our approach to rendering game assets and realizing typical
game effects in section 3.2. We will present our solution for acceleration structure management in this highly
dynamic and generic context in section 3.3. The aforementioned trade-offs will be realized via level-of-detail
mechanisms, heuristics for acceleration-structure building as well as the best possible distribution of our ray
budget to the rendered pixels.

Furthermore, we will present a novel technique for fast and memory-efficient ray tracing of vegetation assets
in section 3.4. While this technique only approximates aspects of light transport through vegetation, we will
show that it delivers visually convincing results while improving runtime significantly, halving our path tracing
timings in vegetation-heavy scenes.

Our evaluation in chapter 4 will consider a wide range of consumer GPUs from different vendors. We will
show that real-time path tracing is possible on capable current generation hardware and outline approaches
for older or less powerful GPUs.
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2 Background and Related Work

While real-time path tracing is a recent development, path tracing has a long history in offline rendering and
there is a rich body of literature on various ray tracing techniques. We intend to give a short overview of
the history of ray tracing and path tracing, summarize the state of the art with respect to game rendering
techniques, and establish some terminology used throughout the rest of this thesis.

2.1 Path Tracing

Using ray tracing to compute light transport instead of just evaluating visibility was first employed by Whitted
et. al. in 1980 [Whi80]. This technique only considered perfect reflections and refractions. It developed into
distributed ray tracing [CPC84] and, eventually, the rendering equation and full path tracing as we use it
today [Kaj86]. To generate an image using the rendering equation, complex scene-dependent nested integrals
are solved for each pixel using Monte Carlo sampling [MU49]. In each iteration, a single path is followed and
at each surface intersection point, the next ray direction of the path is selected randomly. Accumulating the
light along many of these random paths will finally converge to the solution of the rendering equation.

In practice, there are multiple ways to implement path tracing. One option is to trace paths starting from
light sources until they hit the camera, comparable to how light behaves in reality. Due to the random
bounces, the probability of paths hitting the camera is low. Therefore, path tracing techniques often reverse
the physical light transportation process and start their paths at the camera, with rays bouncing around the
scene, accumulating the product of throughput to the camera and gathering light along the way. This is known
as backwards path tracing and what our method will build upon. See algorithm 1 for an algorithmic path
tracing sketch using this technique. In this context, we speak of primary rays/hits for the rays emanating
directly from the camera and their intersections with the scene, i.e. the tracing and the potential hit found
during bounce = 0. While this technique of starting paths at the camera often requires fewer followed paths
to converge to the correct solution, it is not efficient for capturing some specific effects such as caustics and
specular-diffuse-specular light interactions. For those, the function of incoming radiance at a given surface
can have high frequency (as high radiance is coming from just one specific direction) and is hard to predict,
causing Monte Carlo sampling to converge arbitrarily slowly.

A useful notation and tool to discuss light paths is representing them as regular expressions [Hec90] with each
letter representing a light interaction. We use L for light sources, E for eye (camera), D for diffuse bounces,
S for specular reflections, and T for transmission. For instance, the expression LD+E will then describe all
light paths that start at a light and involve only diffuse surface reflections before reaching the camera. This
describes light paths captured by diffuse GI and radiosity approaches [Gor+84]. It is often useful to limit S
and T to surfaces with low roughness and just use D otherwise for all surface interactions. With this notation,
L(S|T)+E describes light path that have not been strongly scattered.
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Algorithm 1 Simple single-sample path tracing algorithm starting at the camera.
TraceRay tests for surface intersection, given ray origin and direction.
ShadeHit evaluates lighting (for instance, emission) at a found surface hit.
GenerateBounce will generate a random light bounce on the surface and update the throughput using the
surface’s bidirectional scattering distribution function (BSDF), see section 2.3 for more details.

accumLight← 0 ▷ radiance (e.g. RGB tuple) in range [0,∞]
throughput← 1 ▷ radiance factor (e.g. RGB tuple) in range [0,∞]
rayOrigin← camera position
rayDir ← camera ray direction for this pixel
for bounce = 0 …maximum number of bounces do

hit← TraceRay(rayOrigin, rayDir)
if hit not valid then

Compute incoming environment radiance γ, e.g. from the sky
accumLight← accumLight+ throughput · γ
break

end if
accumLight← accumLight+ throughput · ShadeHit(hit, rayDir)
rayOrigin← hit.position
GenerateBounce(hit, rayDir, throughput) ▷ Will update rayDir and throughput

end for
return accumLight ▷ accumLight is the final pixel radiance entering the camera

Path Tracing has successfully been integrated into computer games before, one of the first examples was
a ray traced renderer for Quake II [Sch19]. Metro Exodus also had a ray tracing mode considering most
light interactions [Arc+19]. Nvidia has released its Omniverse platform [Lla19] and detailed how to build
a real-time path tracer [Str23]. Recently, the first state of the art games have released experimental path
tracing modes, most notably Cyberpunk 2077 [Bur23a].

On the one hand, we provide an overview of a method to integrate real-time path tracing into the current
generation of games. In comparison to the previously released games, we employ it in a more general video
game setting, involving user-generated content and a freely movable camera that can jump around in the
scene. Moreover, we present new methods, especially for vegetation rendering and highly dynamic scenes
with a high number of animations.

2.2 Optimizations

While the two previously mentioned path tracing approaches are called unidirectional path tracing, they can
also be combined into bidirectional path tracing [Laf95], which attempts to leverage the strengths of both.
The algorithm constructs light paths originating from the camera as well as light paths originating from light
sources and then attempts to connect them, all while staying unbiased. We speak of an unbiased path tracing
technique when the result indeed converges to the exact solution of the rendering equation. On the other
hand, bias is the difference between the expected value of our Monte Carlo sampling and the exact solution,
e.g. as a result of approximations and optimizations.

Metropolis Light Transport [VG97] is another unbiased path tracing implementation that attempts to reduce
variance by sampling paths more efficiently, just mutating known paths that transport high magnitudes of light
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instead of sampling randomly each time. Similar to bidirectional path tracing, photon mapping [Jen96; Jen01]
and progressive photon mapping [HOJ08] attempt to reduce variance for scenes in which light sources are
unlikely to be reached by constructing light paths originating at light sources, albeit at the cost of introducing
bias. In comparison to full bidirectional and Metropolis path tracing, this technique is better suited for
real-time constraints and parallelization on the GPU and therefore a suitable extension of our path tracing
method.

Another important optimization for path tracing is next event estimation (NEE). Instead of bouncing rays
randomly around the scene and just evaluating light emission at a given intersection, radiance coming from
known light sources is explicitly evaluated at intersection points. This involves additional shadow rays but often
leads to significantly faster convergence without introducing bias. In algorithm 1, instead of just considering
surface emission in ShadeHit, we would additionally consider known light sources — e.g. the sun, the
environment or randomly sampling local ones — and cast respective shadow rays. This technique is especially
important for our real-time context and typical game lighting such as point lights or scenes mainly shaded by
a directional light like the sun or moon. Therefore, our method builds upon NEE.

Path space regularization is another important approach. Originally, it was designed to capture light coming
from infinitely small light sources such as traditional point lights that do not fit well into correct light transport
computations [KD13]. Now, it is often used in a general manner to reduce variance by increasing the
roughness at secondary bounces [Wei+21]. In algorithm 1, this could be implemented by clamping the
surface roughness to a minimum after we had at least one highly-scattered (i.e. diffuse or high-roughness)
bounce before executing ShadeHit and generating the next bounce. We rely on this technique, even though
it introduces a slight bias, since it removes “firefly” artifacts and can lead to significantly faster convergence
for scenes involving glossy or light-transmissive materials.

Light paths can be arbitrarily long but we intend to terminate in a limited number of steps, ideally without
introducing significant bias. The common technique to solve this problem is commonly referred to as “Russian
Roulette”, i.e. randomly determining paths and multiplying the contribution of the remaining paths by the
inverse of the termination probability. Optimizing the used heuristics to compute the termination probability
can significantly improve the ratio between convergence rate and runtime [Rat+22]. In section 3.2, we
present a simpler and cheaper heuristic for path termination that is well-suited for real-time rendering and
specifically tailored to typical game situations.

2.3 Importance Sampling and Path Guiding

One of the most important optimizations for path tracing is importance sampling. At each bounce in our
path, we need to compute the non-trivial integral of the rendering equation. Monte Carlo integration with
importance sampling means approximating the integral

∫︂
Ω
f(x) dx

with n samples xi, drawn from a probability density function (PDF) p, by

1

n
·

n∑︂
i=0

f(xi)/p(xi)
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As long as p(x) > 0 holds for all x ∈ Ω where f(x) > 0, this expression will converge to the desired result for
n → ∞. One can show that the convergence of the approximation is faster, the closer p is proportional to
the integrated f . Intuitively, one can imagine importance sampling as variance reduction: if p were perfectly
proportional to f , all summands would have the same value. The ratio between f and p would have to be
exactly

∫︁
Ω f(x) dx and even with n = 1, the approximation would return the exact solution. In practice, finding

a PDF p that is proportional to f is usually not possible. Nonetheless, PDFs mimicking certain characteristics
of f can often be found.

In algorithm 1, importance sampling is implemented in the GenerateBounce function. A good importance
sampling approach would return new ray bounce directions that result in higher throughput (and therefore
higher accumulated light) proportionally more often. Ignoring the transmissive part of surfaces and just
focusing on the bidirectional reflectance distribution function (BRDF) for simplicity, a simple GenerateBounce
implementation without importance sampling is shown in algorithm 2 and an implementation with basic
importance sampling in algorithm 3.

Algorithm 2 Bounce Generation
function generateBounce(hit, inout rayDir, inout throughput)

Generate newDir randomly on hemisphere
throughput← throughput · BRDF(hit, rayDir, newDir)
rayDir ← newDir

end function

In algorithm 3, the BRDF is split into diffuse and specular parts since good approximating PDFs can be found
for the individual parts. This can be understood as a form of multiple importance sampling (MIS) [VG95].
The algorithm prefers specular light bounces for metallic surfaces since the diffuse contribution approaches 0
for them. For the diffuse part of the BRDF, we can easily employ perfect importance sampling for the lambert
BRDF by just generating random samples on the cosine-weighted hemisphere. Non-trivial physically based
specular BRDFs can usually not completely be transformed into a PDF but a good approximation works well in
practice. The geometric function is usually the biggest contributor, driving the shape of the specular reflection
lobe. For the commonly used GGX geometric function [Wal+07], an efficient PDF transformation has been
found [Hei18]. We can see how this function will have a lower variance in its throughput modification,
especially considering specular metallic surfaces with low roughness (i.e. mirror-like surfaces). See figure 2.1
for a comparison.

Algorithm 3 Importance-sampled Bounce Generation
function generateBounce(hit, inout rayDir, inout throughput)

specProb← 0.5 + 0.5 · hit.metalness
if rand() < specProb then

newDir ← ImportanceSampleGGX(hit.normal, hit.roughness)
throughput← throughput · SpecularBRDFWithoutGGX(hit, rayDir, newDir)/specProb

else
Generate newDir randomly on cosine-weighted hemisphere
throughput← throughput · hit.albedo · (1− hit.metalness)/(1− specProb)

end if
rayDir ← newDir

end function

MIS [VG95] is an important building block for importance sampling method since it allows the combination
of many PDFs in a single estimator. Generation of good samples without an explicit PDF can be achieved using
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Figure 2.1: The importance of importance sampling. Sponza with a mirroring ball, 10 samples per pixel (spp).
Left: No importance BRDF sampling applied, as outlined by algorithm 2.
Right: With BRDF importance sampling, as outlined by algorithm 3.

reservoir sampling [TCE05]. In addition to importance sampling the BSDF, we can also attempt to employ
importance sampling to generate rays preferably in directions where we expect more incoming radiance. This
technique is known as path guiding and usually requires non-trivial data structures to estimate/remember
incoming radiance [MGN17]. Deep neural networks have been proposed to generate samples [Mül+18].
Work has also been done to port path guiding to real-time path tracing [DHD20].

As previously mentioned, path tracers using NEE often stochastically choose local light sources for shading.
This can be importance sampled as well, as done by reservoir spatiotemporal importance resampling (Re-
STIR) [Bit+20]. Biased and unbiased variants of ReSTIR have been proposed. The biased variant drastically
reduces the number of traced rays even further and allows for heuristics keeping the introduced bias acceptable
for most cases. ReSTIR GI [Ouy+21] uses ReSTIR ideas for global illumination. Applying ReSTIR to volume
rendering leads to significant variance reduction [LWY21]. ReGIR [BJW21] uses a global grid to extend
ReSTIR ideas to non-primary hits. Generalized resampled importance sampling [Lin+22] generalizes ReSTIR
by proposing a general path reuse technique.

We will employ the established BSDF importance sampling strategies. ReSTIR approaches are a suitable
extension of our method for scenes suffering poor lighting conditions or involving many light-emissive surfaces.
In section 4.4, we discuss an example of a scene advanced light transport or path reuse techniques.

2.4 Realtime Rendering and Rasterization

Computing the intersection between rays and complex scenes can be computationally expensive. Before
the advent of hardware accelerated ray tracing [Wym+18; HBW20], ray tracing was not commonly used in
real-time rendering settings such as games. The ubiquitous approach to display geometry, i.e. to determine
which primitives are covering which pixels, was rasterization [Gha+89]. Surfaces are simplified into a set
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of triangles, the most trivial planar primitive, with the idea that even complicated (rounded) surfaces can
be approximated arbitrarily well with enough triangles. Rasterization allows efficient utilization of parallel
hardware. Shading requires executing the same function for all pixels generated by rasterizing a primitive.
While rasterization and ray tracing both solve the visibility problem, the fundamental difference is that
rasterization requires coherent rays. Ray tracing, on the other hand, has no such restriction. In practice, this
comes with the cost of worse utilization of highly parallel hardware due to the reduced coherency. Traditional
render pipelines offer different possible approaches for solving the different parts of the rendering equation.
Primary hits can be computed with rasterization just as well as with ray tracing, without a significant difference
between the two. Visibility problems such as shadowing from punctual or directional lights can be realized
using rasterization into shadow maps [SWP10; Lik+15]. However, arbitrary secondary rays for indirect
lighting cannot be computed easily. Many computer graphics techniques relevant to games deal with the
shortcomings of rasterization approaches compared to fully solving the rendering equation using path tracing.
There is a large body of real-time techniques used in games for achieving high visual quality, especially to
approximate GI:

• The most simple indirect lighting approach used by older games is to just choose a (possibly art-driven)
constant indirect lighting term. This very crude approximation will result in loss of detail and sometimes
hard readability of scenes in scenes that have just indirect lighting.

• To produce convincing reflections, environment maps [BN76] have long been used. They allow show-
ing a static environment correctly reflected on glossy surfaces. This environment map is completely
independent from (and might not match at all) the currently visible geometry or lighting setup.

• With the advent of physically based rendering (PBR), image-based lighting (IBL) became a more
physically correct variant of environment maps [Kar13]. It provides good approximations of rough
reflections and computes indirect diffuse lighting from the same source as specular reflections. This
technique increases visible detail in materials and perceived depth readability in indirectly lit scenes.

• Screen-space techniques such as screen-space reflections (SSR) [SKS11; Wro14] or screen space ambient
occlusion (SSAO) [Mit07] are used to recover some detail of indirect lighting with the information
already available on the screen. Similarly, shadowing artifacts resulting from the limits of shadow maps
can be improved using screen-space shadowing techniques [Cow+15].

• Assuming a (mostly) static scene and lighting, indirect diffuse lighting could be pre-computed offline
into so-called lightmaps. In practice, this is often realized using radiosity [Gor+84]. This approach can
result in a visual quality of indirect (diffuse) lighting close to fully path traced light transport simulations.
However, it requires significant amounts of graphics memory, and the assumption of static scenes and
lighting is unrealistic for many games. It leads to visual issues and lighting mismatches for the dynamic
elements of a scene.

• IBL techniques can also be applied using probes placed in the scenes to capture indirect diffuse/specular
lighting at specific points. The technique then applies the captures lighting as an approximation for the
lighting of close surfaces. These probes can even be refreshed dynamically at runtime, allowing for
dynamic scenes and lighting conditions. However, the spatial approximations of this approach will often
lose details relevant for convincing indirect lighting.

Since the advent of hardware accelerated ray tracing, many new techniques have been proposed to solve
some of the shortcomings and problems of rasterization-based techniques. Ray tracing based techniques to
improve lighting, such as ray traced reflections [DS19; Hai19], shadows [BWB19], and AO [Bav+18] have
been proposed. These techniques allow solving specific parts of the rendering equation more accurately
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without solving everything. Due to their restricted nature, such techniques are more efficient than fully path
tracing the scene. This comes at the cost of visual artifacts and missing details.

For instance, ray traced shadows [BWB19] from global and local light sources have the advantage of delivering
accurate shadowing information. Such techniques are able to approximate shadow from emissive surfaces,
i.e. non infinitely small light sources. In contrast, shadow maps are generally limited to small light sources.
Furthermore, ray traced shadows often include more details than shadow maps and remove shadow map
artifacts like missing contact shadows or aliasing patterns.

Ray tracing diffuse indirect lighting techniques [MGM19; Hal+21] in games often build upon spatial dis-
cretization of the scene. They heavily rely upon the assumption that the nature of diffuse indirect lighting is
of very low frequency and therefore approximation at certain points in the scene and interpolating in between
works well. Alternatives that do not rely on spatial discretization use denoising techniques discussed below to
accumulate samples over multiple frames and thus deliver a higher degree of detail [Arc+19; Sch19].

One common optimization is to use rasterization or known screen-space information where possible and only
fall back to ray tracing where needed [BS22; Bav+18].

Figure 2.2: Left: Rasterized scene from the game Anno 1800. Right: Path traced image of the same scene. Capturing
the light bouncing off the glossy pipe onto the building requires following mixed diffuse-specular light paths.

The difference between using these ray tracing effects to using full path tracing is in the details. Path tracing
captures the combination of all these ray tracing effects: direct lighting, shadows, diffuse, and specular global
illumination. The interplay between these effects makes it difficult — and in some situations impossible — to
approximate them well with independent ray tracing techniques. For instance, even when using ray traced
diffuse GI and specular reflections together, one can usually not expect to see light bounces as in figure 2.2
as this is caused by a coupling of specular with diffuse surface interactions. Light-transmissive surfaces are
another problem that cannot fully be solved with independent ray tracing effects. Solving the rendering
equation requires following arbitrary light paths involving bounces with all different types of reflections.
There has also been work to integrate volumetric effects into GPU path tracing [Nov+18; HE21].

This thesis aims to evaluate whether path tracing is a viable option to replace all other lighting approximations
and independent ray tracing effects. At the same time, our method will leverage traditional approaches
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and optimizations such as hybrid rendering and fallbacks to shadow map rasterization and screen-space
information.

2.5 Denoising

Due to the probabilistic Monte Carlo nature of path tracing, the resulting images need many samples to
converge. Before convergence, the accumulated samples contain significant per-pixel variance. Denoising
is the process of trying to remove that variance, potentially allowing us to obtain visually pleasing images
much faster than waiting for the Monte Carlo algorithm to converge. This comes at the cost of correctness,
denoising usually introduces bias into the otherwise correct Monte Carlo method.

Typical denoising algorithms use a combination of spatial bilateral blurs and temporal accumulation. The
latter is similar to temporal anti-aliasing (TAA) [Kar14]. Both types of accumulation have different properties,
different use cases, and drawbacks. For a static scene and camera, temporal sample reuse does not introduce
any bias, as it can be understood as a proper accumulation of samples in this case. With careful reprojection
(based on motion vectors mapping pixels from the last frame to the current one) and rejection strategies, the
bias introduced for non-static scenes and camera movement can be reduced. However, one can often observe
temporal lag and artifacts known as ghosting: Non-instant response to changes in the scene, such as lighting
or occlusion chances. Spatial blurring effectively mixes Monte Carlo samples from different functions, this
will automatically introduce bias. Samples from nearby surfaces with similar material properties will likely
have been sampled from a similar function of incoming radiance, bilateral blurring can use these properties to
keep the introduced error low. However, there are cases for which the sampled functions differ fundamentally
without any significant change in surface parameters. This can lead to visual artifacts.

While denoising has been of interest for a long time, there have been some recent advancements tailored
specifically for light transport. The methods make it an irreplaceable tool for path traced renderers, real-time
as well as offline. Separating the lighting components of the rendering equation and employing different
denoising strategies proved helpful [Sch+17]. Lighting is often split into direct, indirect diffuse, and indirect
specular components, based on the type of bounce at the primary hit [Mar+17]. For the indirect lighting
components, using large image-space filters where not enough temporal information is available showed
promising results. This can be achieved with a-trous filters [Sch+17]. Later, the cheaper approach of bilateral
upsampling from a downscaled texture was proposed [Zhd20; Zhd21]. Temporal lag is one of the most
objectionable artifacts of modern denoising techniques. Solutions based on re-evaluating parts of the rendering
equation to detect changes have been proposed [SPD18]. An important idea is to demodulate albedo and
possibly other surface properties to avoid overblurring surface details [Zhu+21]. Denoising will then happen
on inputs that can be understood as being closer to incoming irradiance instead of outgoing radiance. This
means that high-frequency surface coloring details are not blurred doing denoising, as they are only applied
afterward. The importance of this technique can be seen in figure 2.3.

Denoising low-roughness reflective or transmissive surfaces is still a problem since no or little data can be
shared spatially and reprojection during movement is imperfect. A real-time suitable solution for this is primary
surface replacement (PSR) [Pan18]: Instead of denoising the mirror-like surface directly, we run denoising
on a virtual surface mirroring the first high-roughness or diffuse surface interaction encountered during path
tracing. A generalization of this technique uses multiple denoising buffers, allowing one to denoise even
complex perfect reflection and refraction bounces without significant issues [Zim+15]. This has profound
memory and performance costs for the multiple denoising passes, but for a small number of additional buffers,
this solution is a real-time and GPU-suitable extension of our method.
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Figure 2.3: Anno scene only indirectly lit, showing importance of demodulation.
Left: Without demodulation, surface details are completely over-blurred.
Right: With demodulation enabled, denoising is applied (roughly) to incoming instead of outgoing light and surface
details are only applied later.

New denoising approaches based on deep learning have been proposed [HY21; Bur23b]. They are especially
important in conjunction with image upscaling algorithms since denoising is executed before upscaling and
removes the jittering that is needed by modern temporal upscaling algorithms. Deep learning approaches
could solve both problems in a single step.

For our method, we stick to denoising algorithms not based on deep learning since they are easier to deploy
and do not depend on GPU-vendor-specific details. Namely, we rely on the open-source ReBLUR [Zhd21]
denoiser and focus on improving the input data given to the denoiser since we believe this to have more
potential for improvements.

2.6 Hardware Acceleration

Acceleration structures such as bounding volume hierarchies [KK86; Mei+21] can be used to significantly
speed up the intersection test between ray and geometry. In recent years, consumer-grade GPUs additionally
allow for hardware accelerated intersection tests.

Hardware accelerated ray tracing and therefore modern graphics APIs such as Direct3D 12 [Mic20] and
Vulkan [HBW20] rely on a two-level acceleration structure scheme. Individual meshes are built into bottom-
level acceleration structures (BLASes), which in turn are then used to build a top-level acceleration
structure (TLAS). There are two ways to perform intersection tests with a TLAS: using ray queries or ray
tracing pipelines. Ray queries are new shader intrinsics that can be called in any traditional shader stage to
query intersection points between a given ray and the geometry present in a TLAS. Ray tracing pipelines, on
the other hand, are a new type of pipeline that include new shader stages such as ray generation shaders,
miss shaders, and then various hit shaders that are executed when rays intersect with meshes in the TLAS.
The graphics APIs offer new entry points for invoking ray tracing pipelines. Ray tracing pipelines get invoked
with a shader table, mapping geometries in the TLAS to hit shaders. The entry point of a ray tracing pipeline
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is a raygen shader. It is similar to a compute shader but like all shader stages of a ray tracing pipeline, it can
additionally call a TraceRay intrinsic that invokes new shader stages for intersected meshes. Ray queries do
not use shader tables or automatically invoke shaders, they can be seen as a lower level alternative that can be
used in any shader stage.

Top level acceleration structure

Transform
InstanceID

HitGroup index
Mask
Flags

Instance

Bottom level acceleration 
structure

Flags
Type: Triangles

Indices + Vertices

Geometry 0

...

...

Shader Table

Hit group

Closesthit shader

Anyhit shaderAnyhit shader

Custom data 
accessible by 

shader

Figure 2.4: TLAS/BLAS handling and shader table of ray tracing graphics APIs. Figure inspired/Simplified from [Mic20]

One BLAS can contain multiple Geometries. These geometries can be of triangular or procedural type, with
the latter one using custom shader code to determine the exact intersections. Since our method does not use
them, they are ignored in the following. Each geometry has custom flags containing information about culling
and whether the geometry is to be considered opaque. The numbered ID of the intersected geometry of a BLAS
can be retrieved in shaders. As sketched out in figure 2.4, a single BLAS can be reused multiple times when
building a TLAS. Besides the reference to a BLAS, the instances in the TLAS include an affine transformation
matrix, an arbitrary ID that can be retrieved in the hit shader, a mask allowing ray tracing shaders to specify
which instances should be hit as well as a hit group index. When using ray tracing pipelines instead of ray
queries, this hit group index is used to calculate an index into the shader table. The shader table consists of
many hit groups. Each hit group can contain an anyhit shader, a closesthit shader, and custom data accessible
by the respective shaders. The anyhit shader is executed whenever a ray intersects with non-opaque geometry
and is able to inform the hardware that this specific intersection should be ignored. As soon as the closest
valid intersection along a ray was determined, the closesthit shader is run. When no closest intersection is
found, the miss shader passed to the TraceRay call is executed. Data between raygen and other shaders can
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be exchanged by a pipeline-specific ray payload structure.

The BLASes do not just reference existing vertex buffers but are self-contained, i.e. contain all required position
data. Therefore, BLASes consume significant amounts of memory and re-using BLASes for multiple instances
of the same mesh is desired. Building TLASes and BLASes can be done either on the central processing unit
(CPU) or GPU. Since the latter is usually faster, our method exclusively builds acceleration structures on
the GPU. While acceleration structures are considered mostly static after building, the graphics APIs offer
update functionality. Updating an existing acceleration structure is usually faster than completely rebuilding it.
However, it still has significant runtime cost even for the smallest changes and imposes additional constraints,
such as not allowing a change in the number of primitives. Additionally, after updating an acceleration
structure, it might be less efficient in terms of tracing performance compared to a newly built one. Using
updates for big geometric changes is therefore discouraged.

For BLAS and TLAS building, the application must provide the hardware with a so-called scratch buffer. The
required size of this buffer can be queried before recording the build command. BLASes are built directly
from vertex and index buffers. The TLAS is built from a so-called instance buffer. It holds descriptions of the
instances to be present in the TLAS. This description holds the data visible in figure 2.4: The BLAS of the
instance, its transform, hit group, hit mask, and various flags controlling culling and opaqueness.

Implementing path tracing on the GPU is not trivial due to the high divergence of paths. One important
technique to increase GPU utilization (occupancy) is path regeneration [NHD10]. With hardware accelerated
hardware ray tracing, re-occupying already finished threads can be done by the hardware automatically as it
is allowed to repack waves on each TraceRay intrinsic [GB22]. This is only possible in ray tracing pipelines,
applications using ray queries have to manually repack traced rays. But even with ray tracing pipelines,
applications can still improve this packing for better execution and data coherency [Mei+20]. Vendor-specific
shader intrinsics allow manually passing information for better packing to the hardware [RH22].

A method for building acceleration structures lazily as rays pass through them has been proposed [LL20],
using a new ray tracing shader type known as traversal shaders [LLV19]. This approach seems promising but
ultimately relies on a shader type that is not yet widely available. Specific ray tracing methods such as volume
path tracing benefit from entirely new acceleration structure schemes [Mor+23]. We stick to the acceleration
structures already implemented by state of the art GPUs and do not build upon these alternative approaches
since using them does not allow vendor-neutral hardware accelerated intersection testing. Instead, we focus
on utilizing the acceleration structures usable by hardware efficiently.

Scene culling has a long tradition in various real-time graphics methods [Mül04; BPA16]. We will optimize
acceleration structure management by utilizing a novel culling strategy based on light paths that is well-suited
for all real-time ray tracing techniques.
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3 Method

To achieve the goal of real-time path tracing in state of the art computer games, we describe a path tracer
aimed at replacing typical video game renderers. There are many challenges to combining high visual quality
with real-time performance. Additional problems arise when the renderer should work for already existing
assets and scenes that were created without path tracing in mind. These challenges are described in section 3.1
In section 3.2, we first give an overview of our method. Then, we present our solutions to many technical
problems, such as data access, motion vector generation, and some game-specific rendering techniques.
Acceleration structure management is a major challenge for hardware accelerated ray tracing in general. We
deal with this challenge in section 3.3, starting with our general approach and some crucial optimizations.
Afterward, we present light path guided culling (LiPaC), our novel method based on hit feedback obtained
during path tracing that reduces BLAS building runtime and memory consumption significantly. We observed
vegetation to be a major bottleneck during intersection testing. In section 3.4, a novel method for vegetation
ray tracing is presented that is essential to achieve real-time path tracing performance in our method.

3.1 Challenges

3.1.1 Accessing Meshes, Materials, and Textures

Game renderers relying on rasterization often leverage many different graphics pipelines for the different
materials in the scene [Pet21]. They can render different meshes using separate index and vertex buffers,
possibly even containing data in various formats, can change the shader-accessible bound textures and buffers
between draw calls and thus bind respective per-instance, per-mesh, or per-material data. All of this is not
easily possible with path tracing. A single pipeline handles all meshes, materials, and textures. It must be able
to access all the relevant data.

Another issue is the level of detail (LOD) selection for meshes and textures. Accessing an appropriate LOD is
still highly important to avoid aliasing artifacts and improve performance by reducing memory bandwidth.
For textures, graphics pipelines usually use pixel shader derivatives to determine the optimal LOD. We do not
have this information during ray tracing since we do not have the coherency of rasterization. Mesh LODs are
often selected using heuristics such as distance to the camera. With ray tracing, this option is still viable but
will cause problems in situations such as curved mirrors that can significantly magnify objects in the distance.
We thus need robust strategies to decide which mesh LOD to use for ray tracing.
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3.1.2 Vertex Transformation Effects

Another problem involves rendering effects modifying vertex positions, as done in the vertex or mesh shaders
in renderers utilizing GPU rasterization. Once we build an acceleration structure on the GPU, it is static and
cannot be changed anymore. For animations and skinning, we thus need a separate BLAS per instance of a
mesh. In addition, even for static effects such as transforming objects to fit the terrain they are placed on, we
will not be able to share BLASes as outlined in section 2.6. Unique BLASes increase memory consumption
significantly and require more frequent BLAS rebuilds. Heuristics to optimize BLAS sharing as well as a highly
efficient pipeline to transform vertices and build many BLASes per frame are important.

3.1.3 Generating Motion Vectors

Accurate motion vectors are required to accumulate samples across multiple frames, as done during denoising.
Motion vectors need to be as accurate as possible to avoid temporal artifacts and improve accumulation.
In games, motion vectors are often already used for temporal techniques like TAA. Games usually use 2D
motion vectors, allowing reprojecting a pixel on the screen to its previous position. Denoising algorithms
like ReBLUR [Zhd21] can leverage 3D motion information to avoid false-positive sample rejections caused by
missing depth reprojection.

For path tracing, there are multiple ways to generate motion vectors, depending on whether rasterization is used
for primary rays as an optimization. To use denoising techniques such as primary surface replacements [Pan18],
generating motion vectors during ray tracing for arbitrary meshes must be possible. But computing the motion
vectors in hit shaders is not trivial, especially for animated meshes. Doing so requires the state of the animation
in the previous frame. For rasterization, the inputs to animations and transformations from the previous
frame are often stored and then the effects are applied in the vertex shader for the current and last input,
respectively. The difference in the result can then be used to generate motion vectors. But with ray tracing,
we apply skinning and other per-vertex effects during vertex transformation, before BLAS building. Thus, we
have no trivially accessible motion vectors in the hit shaders. We will discuss multiple possible ways to obtain
accurate motion vectors and compare them.

3.1.4 Maintaining Acceleration Structures

One of the complexities of hardware accelerated ray tracing is the building and maintenance of acceleration
structures. They have an inherently high memory consumption. As described above, when meshes are
transformed uniquely per instance, unique BLASes are needed per instance. Memory consumption can
therefore easily become a limiting factor. For scenes with many thousand uniquely transformed meshes and
running animations, optimizing BLAS building and management is of high importance. Since not all meshes
and running animations are visible at all times, or might just slightly influence a couple of pixels on the final
screen, culling strategies to decide which animated BLASes to rebuild, which to update, and which to ignore,
are needed. For static meshes, caching mechanisms that keep the consumed memory reasonable while not
causing frame time spikes by building a high number of BLASes when the camera moves through the scene
are needed. Culling for ray tracing is harder to implement compared to rasterization since rays can easily
bounce outside of the frustum or encounter surfaces occluded from the camera. A valid representation of the
scene is still required in these cases. Otherwise, artifacts, missing objects, or paused animations will quickly
become visible, for instance in mirrors.
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3.1.5 Low-light Situations and Cold Starts

We cannot rely on Monte Carlo integration to converge before we present our path traced approximation since
that generally requires a high number of samples. Denoising can often produce visually pleasing results even
for path tracing results generated by a small number of samples — possibly as low as one sample per frame
per pixel. But there are some problematic situations to solve: When paths barely reach light sources, possibly
only after many bounces, the variance of single a sample becomes prohibitive. An example of this situation is
a closed, dark room that is barely indirectly lit by small windows. Most sampled paths do not find a light
source. In such situations, denoising algorithms produce visually unpleasant images that still contain noise or
are visibly overblurred.
Another problematic situation related to a low sample count is a cold start. Denoising algorithms accumulate the
samples over many frames, whenever this is possible. When the visible geometry changes quickly, for instance
after the camera jumps to a new position, no information can be re-used and even after denoising, the result
might look unpleasant. More advanced light transport approaches [Laf95; VG97], path guiding [Rat+20],
world-space irradiance caching [Hal+21; Gau22], path reuse [Ouy+21; Lin+22], and adaptive sampling
strategies are possible approaches but no definitive solution has been established so far. We do not present a
new solution to this problem but the existing approaches can be combined with our presented method.

3.1.6 Vegetation rendering

Traditional vegetation assets are a well-known bottleneck of GPU ray tracing [FO23]. Trees, bushes, and grass
in games are often modeled just using a high number of planes with alpha testing to transform them into
the form of leaves or grass blades. With rasterization, this leads to massive overdraw with many pixels just
being clipped in the pixel shader, potentially already being a bottleneck. Translating this technique to a ray
tracing pipeline means executing a high number of anyhit shaders, potentially many hundreds for just a single
vegetation asset. This quickly becomes a bottleneck. Some renderers just completely ignore alpha-tested
geometry for secondary bounces [Bou23]. This problem is particularly interesting and difficult because the
vegetation is usually light translucent to some degree, opening the door for new approximation ideas.
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3.2 Path Tracing in Computer Games

Rasterize primary hits

Build/Update BLASes

Pathtrace

Rasterize directional shadows

Denoise

Process Hit Feedback

BuildTLAS

Async compute queueGraphics queue

synchronize

synchronize

Post Processing

Figure 3.1: Overview of the path tracing pipeline on the GPU. Graphics and asynchronous compute queues execute in
parallel to fully utilize the available hardware.

Figure 3.1 provides an overview of our path tracing method. The main motivation for utilizing rasterization for
primary hits is vegetation. More details about vegetation handling can be found in section 3.4. Furthermore,
we use shadow rasterization for vegetation and instances culled from path tracing by our LiPaC method. In
section 3.3, we describe how we build BLASes and the TLAS and why it is executed on the asynchronous
compute queue. In section 3.3.2, we describe LiPaC, our method utilizing hit feedback to cull the path traced
scene. We will detail what happens in the Process Hit Feedback step and how this influences which BLASes are
built in the next frame. We do not detail the denoising step in this chapter, as we rely on the publicly available
Nvidia ray tracing denoiser (NRD) implementation of ReBLUR [Zhd21].

3.2.1 Hybrid Rendering Pipeline

Our rendering method makes use of hybrid rendering, i.e. mixing rasterization and ray tracing. The path
tracing pass generates depth and material information buffers just as a gbuffer pass in a deferred renderer
does [Pet+16]. This allows utilization of traditional video game effects relying on depth or normal information.
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For instance, volumetric effects such as fog and clouds would add considerable overhead to our path tracing
and we therefore apply them as a post-effect. Specific game assets that are not part of the physically lit scene,
such as outlines or overlay effects, will also be rendered on top of our path traced image.

We rely on rasterization for the primary hits. Traced primary rays are completely convergent and therefore
utilize the GPU hardwaremore efficiently than secondary rays but we foundmassive performance improvements
for scenes with vegetation when replacing primary rays with rasterization, see figure 4.10 for details. In such
scenes, even primary rays are much slower to trace than using rasterization due to the high number of anyhit
shader invocations. In section 3.4, we describe our method of handling vegetation for other types of rays.

Using rasterization for primary hits has the disadvantage that mismatches between rasterized geometry and
geometry present in the acceleration structures might create lighting artifacts such as light leaks and incorrect
shadowing. On the other hand, we obtain the flexibility to leave details — vertex animation effects or whole
geometry — out of our acceleration structures for performance reasons and still get correct primary hits. In
particular, this also means we can use different mesh LODs for primary hits and ray tracing, allowing us to
fall back on rougher geometry for ray tracing, improving memory consumption and performance. For small
geometric details, the indirect lighting errors are barely noticeable, and mismatches on a per-vertex level can
often be avoided by offsetting rays. Our LiPaC method presented in section 3.3.2 allows us to completely cull
expensive instances from path tracing if they are expected to have little impact on the indirect lighting of
the scene. Rasterizing primary hits is important in this case. At the same time, LiPaC ensures that meshes
requiring high quality during path tracing (for instance, because they are seen through a mirror) are still
included in path tracing in appropriate quality.

3.2.2 Path tracing pipeline

For path tracing, we use a ray tracing pipeline instead of ray queries. While performance differences vary per
GPU vendor, ray tracing pipelines allow the GPU to schedule traced rays more efficiently [Jos23]. Additionally,
we want to realize a multitude of effects and materials, resulting in hit shaders with high register pressure
already. We thus can profit from the divergence optimization mechanisms possible in ray tracing pipelines. As
recommended by various GPU vendors [Jos23; DiG22; Sjo20], we trace rays iteratively and not recursively,
i.e. we never call TraceRay in hit shaders. Instead, the closesthit shaders write the material properties and
various flags into the payload returned to the raygen shader.

Shooting rays in our path from the last encountered hit (c.f. algorithm 1) will lead to light artifacts for smoothly
shaded surfaces. The shadowing of a seemingly rounded surface will reveal the shape of its primitives. This
artifact is caused by interpolating surface normals to make it appear curved but not using an curved surface
for shadow calculation. As a fixed offset does not solve this issue, we compute the actual offset by interpreting
the surface as curved along their normals. For a detailed explanation of this method, we refer the reader to
the work by Hanika [Han21].

A common optimization to real-time Monte Carlo path tracing is “Russian Roulette” termination. At each
bounce, light paths are terminated randomly with a certain probability. The light found on future bounces of
the non-terminated light paths is multiplied by the inverse of this probability. As long as this probability is
greater than zero, the algorithm remains unbiased. But lower probabilities can lead to significantly faster
tracing times, at the cost of introduced variance. Commonly, the probability of termination depends on the
accumulated throughput. But with just this factor, highly occluded surfaces receive the same number of
bounces on average as surfaces that are directly lit by a strong light source like the sun. In practice, indirect
lighting often has very little impact on the final appearance of bright, directly lit surfaces while a high number
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of bounces is needed to properly visualize surfaces far away from light. To account for this, our termination
heuristic additionally considers the magnitude of the already accumulated light on the current light path.
As soon as a well-lit surface is encountered, the probability of continuing this light path significantly drops.
In equation (3.1), we use the variables from algorithm 1 to describe the probability p for a light path to be
terminated after a given bounce. To determine useful termination probabilities in all kinds of scenes, we
multiply the accumulated light by the currently used exposure for displaying the rendered image. In our
renderer, this exposure is automatically determined, emulating the human eye’s adaption to light [Wro16].
Equation (3.1) has two parameters: Decreasing α ∈ R>0 leads to earlier path termination in all cases. The
parameter β ∈ R>0 controls how significantly the accumulated light is considered. A higher value means
earlier termination for light paths that already encountered light. We found values around α = 0.5, β = 10 to
work well. This means that as soon as we encounter light that is as strong as our current exposure (which
correlates with the average image brightness), the chance to continue the ray will be multiplied by an additional
0.1.

p = min(1,
α · ||throughput||

1 + β · exposure · ||accumLight||
) (3.1)

For surfaces with strong direct lighting, light paths with more than one bounce are rarely considered. Note
that this does not mean that indirect lighting on directly lit surfaces is weakened. The termination strategy
remains unbiased as we multiply the extended light paths with the inverse of the probability. Instead, the
variance of indirect lighting will increase. But when the expected value of light found further down the light
path is lower than the light already accumulated, a high variance for the former is acceptable. We observed
this to be a good trade-off between tracing performance and visual quality.

3.2.3 Data Access

As outlined in section 3.1.1, we need to be able to access all mesh, material, and texture data in our ray tracing
pipeline. To access all our data in ray tracing shaders, we rely on a technique known as bindless resources, or
descriptor indexing in Vulkan [Inc17], for multiple reasons. First and foremost, we support many different
materials with an even higher number of distinct textures. All of this texture data needs to be accessible in our
ray tracing pipeline. There exist approaches that solve this problem using texture atlases or texture arrays,
but they all induce significant limitations and overhead [Kel19]. The drawback of bindless textures is that this
technique is not supported on older hardware. But somewhat recent GPUs that support hardware accelerated
ray tracing usually support this technique anyway. Secondly, we do not want to restrict ourselves to a single
buffer resource for all meshes since that would induce buffer space management issues and overhead. We
would have to handle fragmentation issues and find efficient allocation strategies when frequently streaming
vertex data of different LODs in and out. This is possible to do efficiently but introduces additional complexity.
Instead, we bind a variable-sized array of textures and another variable-sized array for mesh buffers that can
be accessed by our shaders. The mesh buffer array contains the index and vertex buffers that we also use
for rasterization, thus avoiding memory duplication. We allocate custom vertex and index buffers only for
special meshes such as our terrain, as it makes use of custom tessellation not needed for rasterization, see
section 3.2.7. They are equally accessed in the hit shaders via the variable-sized array of buffers. An overview
of the GPU data structures can be found in figure 3.2.

The TLAS instance ID accessible in the hit shader is used to address a structured buffer holding all model
instances. Meshes using multiple materials are realized by using multiple geometries inside a single BLAS.
Having a separate BLAS for each distinct part of a mesh would result in overlapping BLASes, reducing the
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Figure 3.2: An overview of the most important GPU buffers for ray tracing.

efficiency of ray tracing. Furthermore, a higher number of BLASes also has a negative impact on TLAS building
time and memory consumption. On the other hand, combining multiple geometries in a single BLAS requires
storage of additional data per geometry. The instance data for the whole BLAS thus has a geometry offset that
marks the start of the range of geometry instance data in another structured buffer. The hit shader addresses
this buffer using the sum of this geometry offset and the index of the intersected BLAS geometry. Per geometry,
we store indices into the mesh buffer arrays for indices and vertices, flags enabling/disabling effects, format
information about the mesh data, and a material identifier.

This addressing scheme of geometry data means we have to sub-allocate consecutive ranges in the geometry
instance data buffer. Since this operation is required anytime a geometry instance is added or removed, which
also happens on LOD changes, this operation needs to be efficient. There are efficient ways to implement this
such as a two-level segregate fit (TLSF) allocator [Mas+04].

3.2.4 Non-opaque materials

As mentioned in section 2.6, geometries in BLASes can be marked as opaque or non-opaque. For non-opaque
geometry, anyhit shaders are executed. These can ignore hits, for instance after sampling an alpha value for
the given hit from a texture. For opaque geometry, this additional shader invocation is skipped, and all hits
are treated as valid. Thus, path tracing with opaque geometry is significantly faster, see chapter 4 for more
details. Our method should be suitable for existing video game assets that require alpha testing. These assets
usually do not specify which parts of the mesh require alpha testing and which can be considered opaque.
To keep the number of non-opaque geometries as low as possible, we employ a separate offline processing
step per asset that leverages GPU rasterization to quickly compute this information. The mesh is rasterized
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into a framebuffer without render targets. The framebuffer has at least the size of the texture containing the
alpha information. Each vertex outputs its UV texturing coordinates as the position for rasterization. For
each generated pixel, the alpha texture is sampled in the pixel shader. If the alpha value falls below the
alpha-testing threshold, the triangle is considered to be non-opaque. This information is written into a buffer
that holds one bit per triangle. In practice, an atomic OR instruction is used to set the bit associated with the
triangle to one. After this rasterization process, the buffer is copied to the CPU, where it is read to split the
mesh into opaque and non-opaque triangle groups. Each of these groups will become its own geometry of the
BLAS. This approach allows us to decide on a pixel-perfect basis whether a model needs alpha testing and
provides a potential speedup without any visual impact.

3.2.5 Texture Mapping

Even with all the texture data accessible by our hit shaders, the problem of sampling and selecting proper
texture map LODs remains. We rely on cone tracing [Ake+19] to properly compute texture mip levels in
hit shaders as it allows us to compute good approximations of the required LODs without adding much
performance overhead. To render large diverse scenes with many textures, we employ texture streaming in
our engine, only ever loading as much texture detail into graphics memory as is currently needed for rendering
the scene. We utilize feedback from the GPU to determine which mip levels of textures would be needed. We
remember the most detailed needed mip level for each texture in a buffer that is updated during rendering.
After rendering is finished on the GPU, this buffer can be copied and read on the CPU to determine which
mip levels should be streamed in or out. This approach works well for ray tracing: Even for objects not in
the frustum, we can ensure proper texture detail without wasting graphics memory. In Direct3D 12, sampler
feedback [And19] provides an even more detailed way of getting feedback on sampled texture regions from
the GPU to efficiently stream texture atlases.

3.2.6 Velocity vector generation

As described in section 3.1.3, we require motion vectors for denoising. There are multiple approaches to
generating motion vectors with path tracing:

• When using rasterization for the primary hit, we can generate velocity vectors using the technique
commonly applied in rasterization. The transformation matrices of the previous frame are kept around
and all shader-effects that modify positions are applied twice. The difference between the two calcu-
lations then yields the velocity. As mentioned above, there are other advantages and disadvantages
to generating primary hits via rasterization. Additionally, denoising techniques such as PSR or stable
planes [Pan18; Zim+15] require motion vectors at secondary hits. Therefore, a strategy to generate
motion vectors also during path tracing is required.

• For animated meshes, compute shaders are dispatched in each frame to update the vertices for BLAS
building. In that step, we could generate motion vectors for each vertex, just as we do during rasteriza-
tion, and interpolate them in the hit shaders. The downside of this is that we need persistent vertex
buffers holding motion information for each animated mesh instance, potentially increasing memory
consumption significantly.

• We could perform all motion vector computation completely in the hit shaders. This has the drawback of
performing potentially complex operations such as skinning in the hit shaders for the current as well as
the previous frame. In terms of rasterization terms, this is comparable to doing per-vertex operations in
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the pixel shader, which is inefficient since the results are computed potentially many times. The runtime
overhead of this approach and whether it is justified by the reduced memory usage compared to the
previous approach depends on multiple factors: How complicated are the vertex transformations (for
instance, how many bones are affecting each vertex)? How finely tessellated are the meshes and how
large is the scene? When there are just a small number of hits per triangle, this approach does not result
in a high number of redundant computations. Lastly, one has to consider if this becomes a bottleneck of
the hit shaders — for instance, in terms of register pressure — which would then induce an even more
significant performance impact.

These approaches can also be mixed, e.g. generating per-vertex motion vectors before tracing rays only for
some objects and generating them dynamically in the hit shaders otherwise. Since we rely on rasterization
for primary hits, we just generate motion vectors as usual for rasterization-based games during that pass.
For most scenarios, where the use of PSR or stable planes remains fairly limited, motion vectors from hit
shaders will only be needed in a few cases and the performance impact is acceptable. We therefore do not
ever pre-compute motion vectors and purely generate them in the hit shaders, if needed.

3.2.7 Terrain and Tessellation

GPU tessellation is a common video game technique to increase mesh resolution without requiring larger
mesh buffers by tessellating meshes as they are being rendered. This technique is especially used for proce-
dural geometry such as terrain, where the actual geometry is often generated just inside vertex/tessellation
shaders [YS11] by evaluating noise functions or sampling a heightmap. For ray tracing, we emulate tessellation
shaders with compute shaders and generate a more detailed version of the mesh in memory before building
the BLAS from it. This leads to high memory usage, the buffers and BLASes for terrain rendering appear
significant in our memory evaluation in section 4.3.

3.2.8 Cut-out planes and volumes

Cutouts are one of the effects useful for rasterization but not trivial to implement for ray tracing. This technique
allows to procedurally remove sections of terrain or water meshes, for instance, to create objects that seem
like they go into the ground without actually deforming the intersected meshes themselves. The effect is
achieved by defining cut-out volumes with simple meshes and then rasterizing them in multiple passes. This
approach cannot be transferred to ray tracing but it is important to properly handle cut-out sections for all
traced rays to avoid significant artifacts for the lighting of surfaces in cut-out regions. So even if ray tracing is
not used for primary rays, it is still important to consider these effects for shadow and indirect lighting rays.
The problem can be seen as a special case of boolean modeling, for which ray tracing approaches exist [AK21].
Due to the much more specific nature of cutouts, we do not have to implement its full complexity and can
thus be significantly more efficient.

A counter in our tracing logic is increased upon hitting the front face of a cutout mesh and decreased upon
hitting a cutout backface. The counter is needed since we want to support assets with overlapping cutout
volumes and planes for greater flexibility and feature parity with a rasterization implementation. In any case,
after hitting a cut-out object, we just continue tracing the ray from that position. When using rasterization for
primary hits, we trace an initial ray with just the cut-out objects active in our tracing mask from the camera to
our primary hit to initialize this counter. While our counter is greater than one, we do not include the special
meshes, such as terrain or water, in our tracing mask.
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3.3 Acceleration Structure Management

Modern games can have many thousands of meshes, materials, and animations in the scene. Therefore, efficient
strategies for acceleration structure building, updating, caching, and culling are needed. First, section 3.3.1
outlines a pipeline for efficient BLAS building and various important optimizations. Section 3.3.2 describes
LiPaC, our novel method to efficiently prioritize and cull the scene used for path tracing. Independently
from strategies to manage acceleration structures in large scenes, many practical optimizations are crucial
to achieving real-time performance and staying within the memory limits of commodity hardware [Dun19;
Sjo20; DiG22; Jos23]:

3.3.1 General Optimizations

Optimizing the BLASes rebuilds by batching them together Batching builds is recommended by hardware
vendors and shows considerable speedup since it increases GPU occupancy and avoids pipeline stalls. In
practice, this means first running all vertex-transform compute shaders without a memory barrier in between,
then having one barrier on all computed data, and then building all BLASes without a barrier or state change
in between. We want to maximize the throughput and efficiency of BLAS building since there often are many
small BLASes to be built in a single frame. That is why we optimized even our compute shader dispatches
for vertex transformation. We pack vertex buffers and transformation operation descriptions into a single
descriptor set (using Vulkan terminology) so that the only state change in between dispatch calls is a single
push constant.

Building BLASes on an asynchronous compute GPU queue This allows the computation-heavy BLAS
building to be executed in parallel to workloads that are limited by other GPU hardware and therefore do
not use all computational resources. [HD17; BN21] We overlap BLAS building with the rasterization of the
shadow map that is still needed for some post-effects as well as optimizations described below. Rendering
the shadow map is known to be a task often limited by rasterization hardware as it usually does not involve
computationally heavy shaders.

Recording BLAS building commands in parallel to other work Recording the commands for acceleration
structure building can be slow, especially when hundreds or even thousands of BLASes are built. Executing
the recording in parallel to other work on the CPU can help to reduce the effective cost, make use of parallel
CPU hardware, and avoid frame spikes.

Sharing BLASes between instances where possible In large scenes, there are often many instances of the
same mesh. We can leverage this by not building a BLAS per instance but per mesh, or to be more specific, per
mesh LOD, where possible. This is only possible for meshes without vertex transformation effects depending
on the instance such as skinned meshes with dynamically running animations or meshes adapting to their
position on the terrain. For those, we can not share BLASes and describe other optimizations below.
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BLAS compaction When building acceleration structures, initially it cannot be known how much space they
will require due to the dynamic nature of the building process. Ray tracing graphics application programming
interfaces (APIs) will just provide an upper bound for a given input and then offer a way to query the actual
size after building is done. By compacting the BLAS, memory consumption is significantly reduced. We only
compact static BLASes since all other acceleration structure builds are just used for a single frame, making
compaction useless.

Mesh LOD handling Having proper mesh LODs is important for ray tracing to speed up intersection tests
and reduce memory consumption. But each mesh LOD needs its own BLAS. Ideally, mesh LOD switches do not
require a BLAS rebuild every time since many hundred meshes might change their LOD in a single frame for
large, dynamic scenes. We use a hash map to store shared BLASes. Unused shared meshes are evicted as soon
as a graphics memory threshold for the BLASes is exceeded or when they have not been used for many frames.
This helps to achieve an upper bound estimation of the amount of required graphics memory. For instances
that need unique BLASes or if shared BLASes are not present in the cache, we possibly delay LOD switches to
avoid frame time spikes even during fast camera movement. In each frame, LOD change requests are only
processed up to a certain number of BLAS builds or a number of processed primitives, whatever happens first.

Even with all the optimizations above, large and dynamic scenes are still a challenge. Rebuilding all BLASes
of running animations in every frame takes too long, see section 4.2 for more details. Furthermore, in large
scenes with many non-static instances that need their unique BLAS, memory consumption is unfeasible, see
section 4.3.

3.3.2 Hit Feedback

Our method to path trace large and dynamic scenes in real-time while keeping CPU runtime, GPU runtime,
and memory consumption low relies on hit feedback. The general idea of hit feedback is to track how many
light paths encounter each model instance during path tracing and to use these counters for decisions during
acceleration structure management. While it has been suggested to use hit feedback to determine which
animated BLASes to update in a given frame [Mak23], we take the idea one step further, building our entire
acceleration structure management process upon hit feedback. Information from hit feedback completely
replaces all previous culling techniques known from rasterization. In our method, areas of the scene that are
rarely encountered by light paths are not added to the TLAS anymore and instead replaced with bounding
boxes that count light paths reaching this area of the scene to potentially activate instances again. In summary,
we cull the path traced scene based on the hit feedback provided by the traced light paths. Therefore, we call
the method light path guided culling, LiPaC for short.

The main goal of LiPaC is to reduce the number of instances in the TLAS as much as possible. This is important
for two reasons. First, a lower number of instances improves performance: It reduces TLAS building times,
lowers the number of animated BLASes we have to update each frame, and potentially reduces TLAS traversal
time during path tracing. Second, fewer instances mean reduced memory consumption for multiple reasons.
The TLAS itself and the TLAS instance buffer become smaller. In addition, the number of unique BLASes we
need for animated or otherwise uniquely transformed meshes is reduced. It also allows the freeing of shared
BLASes in the cache more quickly when they are not used anymore. At the same time, all model instances
that are reached by rays should be present in the TLAS to avoid incorrectly lit scenes.

To gather hit feedback, the number of light paths intersecting an instance is counted in closesthit shaders
during path tracing. Afterward, the hit counters are spatially accumulated into a coarse spatial grid managed
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on the GPU. This acceleration structure was chosen for its simplicity but other choices such as quadtree, octree,
k-d tree or bounding volume hierarchy (BVH) are possible as well [Sam84; Mei+21]. The elements in the
grid are called hitboxes and accumulate the number of light paths that traverse the associated area. Each
hitbox is marked as active or inactive. For active hitboxes, all model instances in their volume are added to
the TLAS. Inactive hitboxes just add an axis-aligned bounding box (AABB) BLAS instance to the TLAS that
accumulates the number of rays passing its volume. As the number of hits a single hitbox encountered passes
a certain threshold ϑa, it switches to the active state. To consider whether a hitbox should be activated again,
the accumulated hits from all its model instances are compared against another threshold, ϑd.

Figure 3.3: Visualized hit feedback in a big city scene. Left: path traced views of the scene. Right: the instances present
in the TLAS for the associated perspective on the left. In the second row, a mirroring cube was placed into the scene.
Object color is interpolated from white to red, the higher the hit count.

Figure 3.3 shows a visualization of a scene culled by LiPaC. The right image shows a top-down view of the
TLAS state for rendering the respective images on the left. For the simple case in the first row, mainly instances
inside the frustum get hit. Only a small number of instances outside, but closely around the frustum are
encountered by a relatively high number of rays and therefore added to the TLAS as well. Similar results can
be achieved by just activating instances close to the frustum. The second row shows LiPaC working in a much
more general way. With a large mirroring block in the scene, instances visible in the mirror are activated
while instances occluded by the mirror are not added. In both cases, only a small fraction of the whole scene
is considered active.

To realize this method efficiently, we fill the instance buffer used to build the TLAS entirely on the GPU. The
TLAS instance buffer building process that is run each frame is outlined in algorithm 4. When the application
starts rendering a scene, all hitboxes are initialized to be in the inactive state. Their state changes are discussed
later on. Furthermore, in each frame, the hitbox height bounds are reset. For each hitbox, minY is set to +∞
while maxY is set to −∞. The loop in the first line is parallelized on the GPU, with one thread per model
instance. Each model instance is in one of three possible states:
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active The instance has an associated BLAS that is added to the TLAS, see line 7. In practice, appending
TLAS instances to the buffer is done via an atomic counter.

omitted The instance is in a region of the scene that is important for lighting the scene. However, the instance
itself is not hit by many light paths and it is costly to add to the TLAS, for example, because it is animated
and needs its unique BLAS. Therefore, instead of the exact geometry, a bounding box is added to the
TLAS. It accumulates the number of encountered light paths to activate the instance when needed.

inactive The instance is in a region of the scene that is not encountered by many light paths, i.e. it is associated
with an inactive hitbox. The instance is not added to the BLAS. Instead, the minimum and maximum
height of all instances in a hitbox are evaluated in lines 16 and 17.

Hitboxes and instance bounding boxes in the TLAS are realized by having a single, static BLAS that contains
the unit cube. The transform matrix of the instance description is used to transform it as needed, as outlined
in lines 10 and 23.

Afterward, a GPU thread is dispatched per hitbox, outlined by the loop in line 20. For inactive hitboxes, it
adds a transformed unit cube instance to the TLAS. The transform will consider the height bounds previously
determined by all contained instances. This box instance is needed for inactive hitboxes so that hits reaching
the associated area in world space will be registered and can be accumulated. After these steps, we build the
TLAS using the newly assembled buffer of instances.

Algorithm 4 Build TLAS Instance Buffer
1: for every model instance M do ▷ Executed in parallel on GPU
2: if M .state = active then
3: X: TLAS instance description ▷ See Vulkan or D3D12 instance description specification
4: X.blas←M .blas
5: X.transform←M .transform
6: X.hitGroup←M .hitGroup
7: Append X to TLAS instance buffer ▷ Realized via increasing an atomic counter
8: else if M .state = omitted then
9: X: TLAS instance description

10: X.blas← global static unit cube BLAS
11: X.hitGroup← HITGROUP_HITBOX
12: Set X.transform such that it maps unit cube to M.aabb
13: Append X to TLAS instance buffer
14: else if M .state = inactive then
15: Get hitbox H at position of M
16: atomicMin(H.minY, M .aabb.min.y)
17: atomicMax(H.maxY, M .aabb.max.y)
18: end if
19: end for

20: for every hitbox H do ▷ Executed in parallel on GPU
21: if H.state = active ∧ H.minY < H.maxY then
22: X: TLAS instance description
23: X.blas← global static unit cube BLAS
24: X.hitGroup← HITGROUP_HITBOX
25: Set X.transform such that it maps unit cube to H bounds
26: Append X to TLAS instance buffer
27: end if
28: end for
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During path tracing, whenever a ray hits a model instance or hitbox, the associated hit feedback counter is
increased atomically. Besides the hit counter, more information allowing for simple atomic updates can be
stored such as whether a light path from the camera hit the instances that did not have a scattered bounce
before, i.e. E(T|S)* paths. Instances encountered on such light paths, for example, when seen through
a mirror or behind glass, require additional detail compared to instances just encountered by light paths
after a diffuse or high roughness specular bounce. Such additional information can be used to develop more
sophisticated heuristics to decide whether a model instance should be marked as active, inactive, or omitted.
Hitboxes have a special closesthit shader, indicated by HITGROUP_HITBOX in algorithm 4. That shader will
register hits and set a bit in the ray payload returned to the raygen shader causing this hit to be skipped and
the ray continued to be traced along its current direction. In practice, we allow each ray to only hit one hitbox,
masking out all other hitbox instances in tracing after the first intersection of a ray with a hitbox.

After path tracing is done, the accumulated hit feedback is processed on the GPU. The relevant functions
are outlined in algorithm 5. First, the number of encountered light paths is summed from the active model
instances into their spatially associated hitboxes in line 4. The hit counts get reset to zero for each model
instance and hitbox at the beginning of each frame. Then, in a second pass, a GPU thread is dispatched for
each hitbox. In this pass, the state of the hitbox is reconsidered: If the hitbox is marked as inactive but the
received number of hits exceeds a threshold ϑa it is marked as active in line 9. When the hitbox is marked
as active but the number of hits received for the instances in its volume is below a threshold ϑd it is marked
inactive again, shown in line 11. Making the activation threshold significantly higher (around factor 10) than
the deactivation threshold proved a good setup to avoid frequent state cycles. The activation/deactivation
logic shown in algorithm 4 is shortened for conciseness. In practice, we use more sophisticated heuristics
considering the type of ray and light path. Additionally, we only deactivate hitboxes after the number of hits
has been low for several frames.

In a third pass, a GPU thread is dispatched per model instance to consider if the state of this model instance
needs to be changed, depending on the state of the associated hitbox and the number of encountered light
paths. On state change, an encoded command value is appended to a buffer intended for CPU reading, as seen
in lines 17, 25, 31, and 34. Appending concurrently is realized using an atomic counter which is increased for
each added command, similar to how we add TLAS instances to the TLAS instance buffer in algorithm 4. The
buffer holding the commands is afterward copied and processed on the CPU. For activated model instances,
it is ensured that they have a valid BLAS associated. For model instances that are deactivated, associated
resources such as unique BLASes are deallocated. As mentioned above, model instances with a unique BLAS
are handled separately. When the associated hitbox is activated, they are put into the omitted state first, as
seen in line 23. It is only activated when the bounding box added to the TLAS (see algorithm 4 line 13)
encounters a number of light paths above a threshold σa, as shown in line 32. As soon as the active model
instance is encountered by a small number of rays below σo again, it will be put into the omitted state again,
as shown in line 35. The remove command written out in line 34 will make sure to free the unique BLAS. Once
again, in practice, we choose the activation threshold to be around factor 10 higher than the deactivation
threshold and consider additional heuristics for activation.

While this method of omitting costly model instances allows us to put a limit on the amount of consumed
memory and BLASes that need to be updated or rebuilt each frame, it impacts lighting quality by omitting
scene elements. Thus, the method can be seen as a realization of the trade-off between visual quality on the
one hand, and memory/performance constraints on the other one. Instances encountered by a small number
of light paths, such as animated models in the distance, are not crucial for the indirect lighting of the scene
but have a significant cost, making this trade-off reasonable in the context of real-time path tracing. With
the hybrid pipeline detailed in section 3.2, we can ensure that omitted elements indeed only impact indirect
lighting. Using rasterization for primary hits, they will still appear in the final image. Omitted models are
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Algorithm 5 Process Hit Feeback
1: for each model instance M do ▷ Executed in parallel on GPU
2: if M .state = added ∨M .state = omitted then
3: Get hitbox H at position of M
4: atomicAdd(H.hitcount, M .hitcount)
5: end if
6: end for

7: for each hitbox H do ▷ Executed in parallel on GPU
8: if H.state = inactive ∧ H.hits > ϑa then
9: H.state← active

10: else if H.state = active ∧ H.hits < ϑd then
11: H.state← inactive
12: end if
13: end for

14: for each model instance M do ▷ Executed in parallel on GPU
15: Get hitbox H at position of M
16: if M .state = added ∧ H.state = inactive then
17: Append remove(M) command to readback buffer ▷ Realized via increasing an atomic counter
18: M .state← removed
19: else if M .state = omitted ∧ H.state = inactive then
20: M .state← removed
21: else if M .state = removed ∧ H.state = active then
22: if M needs a unique BLAS then
23: M .state← omitted
24: else
25: Add add(M) command to readback buffer
26: M .state← added
27: end if
28: end if
29: if H needs unique BLAS then
30: if M .state = omitted ∧M .hitCount > σa then
31: Add add(M) command to readback buffer
32: M .state← added
33: else if M .state = added ∧M .hitCount < σo then
34: Add remove(M) command to readback buffer
35: M .state← omitted
36: end if
37: end if
38: end for

also rasterized into a shadow map that is sampled during path tracing in addition to shadowing rays. This
hybrid shadow technique is also used by the method described in section 3.4. While the rasterized shadow
is of lower quality than a path traced shadow and only possible for simple light sources, it ensures a visual
quality baseline. More sophisticated heuristics could be used to consider how much omitting a model instance
will truly impact the final appearance of the scene, based on scene and light path information.

The method is explicitly designed to be GPU-driven. This has a major advantage: No iteration over all
(visible) model instances in a scene is ever needed on the CPU side. This allows us to have many millions of
model instances. On the GPU side, iterating over all instances in the scene, no matter if visible or not is no
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performance concern in practice. See chapter 4 for more details on the performance of these dispatches.

One problem of the feedback approach is the latency between detecting that instances should be active and
having them influence the lighting of the final image. The GPU-driven nature of our method amplifies this
problem. The readback buffer containing which instances to add or remove can only be read on the CPU side
later when execution on the GPU is known to have finished. For instance, when the camera suddenly jumps
to a new position, no instance at this position might be added to the TLAS. In the first that is frame path
traced at this new position, all hitboxes will receive high numbers of hits and thus activate all of their model
instances. While this means that instances could already be active in the next frame, their associated BLASes
might not have been built yet. In that case, they will only become visible after the readback buffer has been
processed on the CPU and their BLASes have been created. This will potentially cause instances to appear
with a delay of multiple frames after the camera position, viewing direction, or elements in the scene change.

An extension of our method solves this worst case: On the CPU we ensure each frame that all instances
newly appearing in the frustum have an associated BLAS and are marked as active. This check also covers
newly created instances in the frustum. With this, we do not have any latency at all for objects directly in the
view frustum. On the other hand, significant camera changes might lead to spikes in the number of active
instances and BLAS builds. Thus, an additional heuristic based on instance distance to camera and size selects
only instances considered crucial for indirect lighting. Furthermore, the visible latency of several frames
still persists for appearing instances that are not in the frustum and are only viewed through mirroring or
refracting surfaces.

The tremendous impact on performance and memory consumption our BLAS management method achieves
can be seen in chapter 4.
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3.4 Efficient Ray Tracing of Vegetation Assets

Vegetation in games is often modeled using many planar quads and alpha testing to avoid excessive mesh
complexity. In rasterization, alpha testing works by sampling a texture in the pixel shader and discarding the
pixel if the alpha value is below a certain threshold. In ray tracing, this can be accomplished using anyhit
shaders which sample the respective texture and disregard hits where the alpha value is below the threshold.

Vegetation assets often consist of many hundreds of these planes, requiring just as many separate anyhit
shader invocations for a single traced ray in the worst case. The same issue also happens with rasterization,
since the high amount of overdraw and pixel shaders being executed is a bottleneck. However, the constant
performance factor for each shader invocation during ray traversal is even higher for ray tracing. Additionally,
we have the same problem potentially for every single bounce during path tracing. Furthermore, for textures
with a lot of small, high-frequency details, neighboring rays will often not end up hitting the same plane,
resulting in high ray divergence. All these factors lead to alpha-tested geometry, especially vegetation, often
being a limiting factor in ray tracing.

With anyhit shaders No anyhit shaders

1 500 1,000 1,500 2,000 2,500

Full path tracing time per wave in µs

Figure 3.4: GPU path tracing timings for a vegetation-heavy scene with and without anyhit shaders.

As seen in figure 3.4, disabling alpha shading via anyhit shaders significantly speeds up path tracing. Unfortu-
nately, even if we only disable it for secondary bounces, where approximations often have a less significant
impact, vegetation will block too much light. The degraded visual quality is visualized in figure 3.5.

One approach aiming to improve performance without loss of visual quality is opacity micromaps [FO23].
This is achieved by encoding the alpha information into the BLAS using microtriangles. Besides this technology
not being widely available in GPUs, it has the conceptual drawback of increasing memory consumption.
Tessellating the mesh to more closely match the visible parts of the texture has the same drawback.
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With anyhit shaders No anyhit shaders

Figure 3.5: Demodulated indirect diffuse lighting comparison with and without anyhit shaders.

Instead, our approach aims to use heuristics within hit testing itself. We still want to leverage the fact that
secondary bounces after diffuse or high-roughness surface interactions need less accurate lighting information
for single rays and therefore less accurate alpha testing. The only important property is that integrals over
hemispheres remain good approximations. Additionally, we observed that the visual quality of vegetation
assets sometimes even suffered from correct light transport computation, as this can make the approximative
geometry (of just planes) more visible. With rasterization, renderers often use additional techniques for
lighting calculations to hide these problems.

Our approach applies a heuristic based on asset and ray to stochastically skip the ray through the entire
vegetation asset, thus avoiding additional anyhit shader invocations altogether, as sketched out in figure 3.6.
Vegetation instances do not have anyhit shaders activated. In the closesthit shader, we stochastically decide
to either reflect the ray or let it skip through the entire object for hits that should have been ignored by
alpha testing. An anyhit shader would only be able to ignore one specific intersection but cannot skip the ray
through the entire instance. For rays that should pass through the object, we manually do an intersection
of the ray with the bounding box and continue path tracing where it leaves. We do not use the AABB itself
in our acceleration structure, even though intersection with them can be accelerated on GPUs as well. By
using the actual geometry and just handling transparency differently, we stay closer to the actual shape of the
vegetation asset.

We generate a per-hit random number and then compare that against a threshold generated by a heuristic.
There are multiple ideas for heuristics to use. The most trivial heuristic is to just choose a fixed number as the
threshold. That number could be configured per asset, possibly even per viewing direction. Another idea is to
consider how far the ray needs to travel through the assets bounding box before reaching the other side. For
some tree assets, we got good results with a heuristic considering how close to the center of the asset the
remaining ray through the bounding box gets. But no single heuristic worked well for all of our assets and
cases. Figure 3.7 visualizes intersections with a tree asset using our method. It shows how the shape and the
blocked light of the tree are approximated by the heuristic while avoiding anyhit shaders.

A rough outline of our algorithm can be found in algorithm 6. The raygen shader attempts to trace the ray
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Figure 3.6: Our bounding-box approach to tracing scattered rays through vegetation. At the first red dot, the light path
encounters a diffuse or high-roughness bounce. At the second red dot, it hits a transparent part of a vegetation instance.
The associated bounding box is outlined in red. First, the intersection point of the current ray with the bounding box
is computed, as indicated by the third red dot. A heuristic decides if the light path should skip through this instance
completely, in which case the path is continued with the green ray. Otherwise, the hit is considered valid as if the
geometry was opaque. The light path continues with a random bounce, as visualized by the blue ray.

Figure 3.7: Left: typical tree asset rendering. Right: the same tree asset with our heuristic applied. Note that our
heuristic is never used for primary or shadow rays, this is a visualization showing the representation of the asset used for
highly scattered indirect lighting bounces.
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Algorithm 6 Vegetation heuristic for stochastic ray skipping

1: function chsVegetation(ray payload p) ▷ Closesthit shader for vegetation instances
2: Compute material of instance, sample alpha
3: Increase hit count for instance ▷ Write hit feedback for LiPaC
4: if payload.allowSkip ∧ alpha below threshold then
5: Get axis-aligned bounding box aabb for instance
6: Compute E, second intersection of ray with aabb
7: Compute heuristic threshold σ depending on aabb, alpha, ray,E
8: if random value < σ ∨ current primitive is invisible then
9: p.skip← true

10: p.endpos← E
11: Set p.hitidst to intersection distance of traced ray ▷ Available via shader intrinsic
12: return
13: end if
14: else
15: p.hit← true
16: Write material and intersection parameters to p
17: end if
18: end function

19: Let p be the ray payload, for data exchange between shaders
20: for each ray to trace do ▷ Not for shadow rays
21: Let origin, dir describe the ray and dist be the maximum ray distance
22: Set p.allowSkip to true if light path encountered diffuse or high roughness bounce
23: TraceRay(origin, dir, dist, p, mask: all instances) ▷ Calls chsVegetation when closest hit is vegetation
24: if p.skip then ▷ Should ray be skipped through vegetation asset?
25: end← p.endpos
26: origin← origin+ p.hitdist · dir
27: rd← ||end− origin|| ▷ Maximum trace distance of retrace ray
28: TraceRay(origin, dir, rd, p, mask: all instances without vegetation) ▷ Does not hit vegetation
29: if ¬p.hit then
30: p.allowSkip← false ▷ Allow just one vegetation skip per ray
31: TraceRay(end, dir, dist, p, mask: all instances) ▷ Might call chsVegetation but ray skipping disabled
32: end if
33: end if
34: if p.hit then
35: process hit
36: end if
37: end for

defined by origin, dir, with a maximum traced distance of dist and handles retraces needed for vegetation.
The pseudocode intrinsic for TraceRay takes the origin, direction, and maximum distance of the traced ray,
the payload for data sharing between shaders as well as a mask describing which types of instances to consider.
When the closest hit of the ray with the scene is an instance marked as vegetation, chsVegetation will be
invoked. If vegetation skipping is enabled and the hit is not valid, i.e. the sampled alpha value is below the
alpha testing threshold, it computes the heuristic threshold σ in line 7. It has access to the ray direction
and origin via GPU shader intrinsics. If the ray should be skipped through the vegetation, this is marked via
the skip bit in the ray payload. In addition, the second intersection from ray and AABB is passed back to
the raygen shader via the payload as well. In the raygen shader, we check for the skip bit in line 24. In line
31, after a vegetation instance was skipped and tracing is continued outside of its bounding box, vegetation

39

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#raytcurrent


skipping is disabled for the rest of the ray. This is an explicit design decision to limit the performance impact
of our method. After the first skip, geometry is just treated as opaque.

When we decide that our ray should pass through the object and continue tracing on the other side of the
bounding box, we might miss intersections with other geometry inside of the bounding box. This can lead to
visible light leaking artifacts. Ideally, we would trace the ray for the skipped distance again, just masking out
the handled vegetation asset but current ray tracing hardware does not allow masking out specific instances
efficiently — this is usually done via anyhit shaders and that is what we aim to avoid in the first place. We use
one instance mask bit for vegetation, allowing us to mask out all vegetation and retrace the ray through the
bounding box against solid geometry. This solves the artifacts we encountered. In algorithm 6, this can be
seen in line 29. Only the skipped section of the ray is retraced without considering vegetation.

Even with secondary diffuse bounces solved, there are still other rays we trace. Shadow rays will cause
vegetation to remain a bottleneck. Shadow rays executed for shading in primary hits after a diffuse bounce
could be handled with a similar heuristic. But we cannot use the heuristic for bounces or shadow rays in a
ES* paths, e.g. for shading the primary hit or bounces after a mirror, since we need correct shadows and
visibility in that case. To solve this bottleneck, we fall back to rasterization for vegetation shadow, where
needed and possible. Vegetation usually involves just comparably small objects, throwing small shadows. The
advantages of path traced shadows are often not significant for vegetation. Detailed comparisons can be found
in section 4.4.

Another difficulty are effects that cull individual primitives. For instance, using rasterization, the vertex shader
could remove grass blades where they would intersect with procedural or user-placed geometry. For path
tracing, these conditions are moved to the anyhit shader, ignoring hits where primitives should be invisible.
This conflicts with our approach: If we execute the checks and ignore the hit where appropriate (instead of our
heuristic) we will potentially have to execute many anyhit shaders again. In our evaluation cases, we found
situations where large amounts of primitives are culled like this, thus significantly impacting performance. If
we instead just always apply our heuristic, we might get a hit on a primitive that should have been culled. Our
solution is to slightly modify our heuristic. We still choose the first hit, avoiding the cost of anyhit shaders. But
then we check the culling conditions in the closest-hit shader and once again skip through the entire bounding
box if the primitive is culled. This means we potentially cull too much but we found this an acceptable trade-off.
In algorithm 6, this additional skipping condition can be found in line 8.

40



4 Evaluation

Integrating path tracing in a game can mean a new degree of visual quality. However, it can have a severe
impact on CPU and GPU frame time as well as memory requirements. We evaluate these criteria in various
game-related rendering scenarios and provide timings and memory consumption for various GPUs. First, we
give the reasoning behind our evaluation scenarios and present the employed hardware setups. Section 4.2
then describes performance evaluations for various scenes and setups while section 4.3 details the memory
consumption of our method. Section 4.4 examines the produced visual detail and compares it to alternative
lighting strategies.

4.1 Evaluation Scenarios

As a first test scenario, we want to analyze known computer graphics benchmarks with high-quality textures
and meshes, but limited scene size. Here, we focus on visual quality, testing the Sponza [Int22] scene including
the curtains and ivy additional packages. The scene is completely static and contains a total of 6.4 million
vertices and 10.8 million triangle primitives. We want to evaluate noise and convergence rates in difficult
lighting situations that do not occur naturally for outside scenarios.

To answer our hypothesis, we want to evaluate our methods with a rendering engine used for real current
generation games, preferably in a generic case easily transferable to other game scenarios. The Anno [Ubi23]
game series is a good candidate for multiple reasons. The game series allows players to build their own
cities and economies. It is known for the resulting complexity of rendered scenes, consisting of potentially
large user-generated cities. The rendering engine therefore has to handle these completely dynamic scenes
efficiently. Users can build or destroy many buildings with a single click. No scene information or upper bounds
on the number of objects is known statically in contrast to other game genres with static levels. In Anno 1800,
large cities bustle with life: Workers can be seen following their daily business, industry buildings can be seen
working their machines, large amounts of residents and carts roam the streets, wildlife is running through
the forest, flying through the air and swimming through the ocean. Large game scenes can contain more
than 5000 animated instances in any given frame. On the other hand, the game is also very vegetation-heavy
outside of its cities. Grass is spawned dynamically all over the terrain, and islands are full of trees, bushes,
and entire forests. This puts our vegetation rendering methods to the test. Anno furthermore allows arbitrary
camera movements and jumps. This forces us to handle cold starts well — situations in which little or no
previous lighting information can be re-used. Furthermore, the arbitrary and quick movement and zooming of
the camera will result in a high number of LOD switches, putting our acceleration structure management
system under pressure.

We measure memory consumption and frame timings in various settings and camera perspectives of the game.
For runtime performance, we gather CPU and GPU timings in those settings and investigate scenes with many
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GPU CPU RAM OS C++ Compiler
Setup 1 Nvidia RTX 3090 AMD Ryzen 1600 16 GB Linux 6.6.6 GCC 13.2.1
Setup 2 Intel Arc A770 AMD Ryzen 5900x 64 GB Windows 10 MSVC 14.36
Setup 3 AMD RX 7900 XTX AMD Ryzen 5900x 64 GB Windows 10 MSVC 14.36
Setup 4 Nvidia RTX 2080 AMD Ryzen 5900x 64 GB Windows 10 MSVC 14.36
Setup 5 Nvidia RTX 4090 AMD Ryzen 5900x 64 GB Windows 10 MSVC 14.36

Table 4.1: The evaluation setups referenced throughout the performance evaluation sections

running animations and a moving camera, inducing many LOD changes every frame. Visual details will be
evaluated especially regarding our approximations and path tracing optimizations.

The setups of the machines used for evaluation can be found in table 4.1. It includes GPUs from three major
ray tracing capable hardware vendors. With the Nvidia RTX 4090 and the AMD RX 7900 XTX, we evaluate
the most capable of current generation consumer GPUs. With the Nvidia RTX 2080, we include a GPU that is
more than five years old to investigate whether path tracing can also be considered on older hardware. The
renderer is written in C++. We implement our path tracing method for the Direct3D 12 DXR [Wym+18] and
Vulkan [HBW20] APIs. The used API is stated for each evaluation scenario.
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4.2 Rendering Performance

Evaluation Method Discussing GPU runtime performance, analyzing bottlenecks, and optimizing the runtime
of hardware accelerated ray tracing can be challenging since all tracing is capsuled into a single monolithic
command (vkCmdTraceRays for Vulkan and DispatchRays for Direct3D). To get more fine-grained
information to reason with, we use in-shader profiling via shader timestamps. This is possible via vendor-
specific APIs [MS20] or using the VK_KHR_shader_clock extension in Vulkan [Inc19]. With this extension,
we can evaluate the time needed to find ray intersections, execute specific hit shaders, or even just to execute
specific code blocks. We average the timings over 10 frames to avoid their inherent noise and visualize them
into heatmaps. These images appear more low-resolution due to timings being coherent between entire GPU
waves but are generated at full rendering resolution. When we measure specific timings on the GPU, we avoid
executing the workload on the asynchronous compute queue. Timings from this queue would depend strongly
on the independent work executed concurrently on the graphics queue and therefore not be meaningful.
Only when we measure full frame times will we execute acceleration structure building on the asynchronous
compute queue. We measure CPU times using std::chrono::steady_clock. GPU timings for entire
operations are obtained using timestamp queries available in Vulkan and Direct3D 12. We execute barriers
before measuring the first timestamp and after measuring the second one to avoid other work overlapping our
timed section. For timing measurements of static scenes, values are averaged over 100 frames.

Ground Ivy Twilight

0 100 200 300

Full path tracing time per wave in µs

Figure 4.1: The evaluated views of the Sponza scene and their corresponding path tracing timing heatmaps for setup 1,
Vulkan, 1080p.

Figure 4.1 shows the evaluated views of the Sponza scene and their GPU path tracing timing heatmaps.
The corresponding path tracing and denoising timings for the entire frame are visualized in figure 4.2. The
GPU frame time is determined mainly by these two passes since we do not employ any rasterization in this
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GPU path tracing times in various Sponza perspectives
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Figure 4.2: GPU path tracing and denoising timings for the Sponza views from figures 4.1 and 4.3. The bars show
the timing mean while the black lines show the entire range of obtained timings. The figure compares setup 1 and 3,
Vulkan, 1080p.
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Full path tracing time per wave in µs

Figure 4.3: Path traced view of the Sponza scene with added mirroring spheres. The corresponding GPU timing heatmap
on the right is obtained with setup 1, Vulkan, 1080p.
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evaluation scenario. The primary motivation for using rasterization was to speed up vegetation path tracing
and to obtain shadows for instances that are culled from path tracing. Both optimizations do not apply
to the Sponza scene. It does not contain vegetation with massive amounts of overdraw and culling is not
important due to the limited size of the scene. To evaluate path tracing of reflections and our implementation
of PSR [Pan18], we add mirroring spheres to the Sponza scene in the Spheres evaluation scenario. A path
traced image of the scene and the corresponding GPU timing heatmap is shown in figure 4.3. It shows that the
additional specular bounces needed for PSR significantly increase path tracing time. However, this method
allows for perfectly denoised reflections even on curved surfaces and the timings stay well within our real-time
constraints. The timing heatmaps for the other viewpoints reveal divergence due to geometric discontinuities
to be one limiting factor for ray tracing. The timings in figure 4.2 show that there are differences in path
tracing times between different viewpoints of the same scene. At the same time, they exhibit an acceptable
timing variance for a fixed point of view, even though bounce types and directions are selected randomly. This
is important to avoid significant frame timing spikes. The denoising times stay consistent across perspectives.
Building the BLASes for all meshes in the scene on Setup 1 took 39.4ms on average with a standard deviation
of 1.9ms. Building the TLAS took 0.15ms on average with a standard deviation of 0.03ms. This already shows
that even for detailed scenes with many primitives, acceleration structures can be built quickly on modern
hardware.

To further investigate the GPU runtime performance of our method, we gathered data from many scenes
of the game Anno 1800 [Ubi23] on different GPUs. An overview of path tracing times on different GPUs in
a typical Anno city scene with added vegetation can be seen in figure 4.4. A rendered image of the scene
is shown in figure 4.11. The high-end GPUs execute path tracing fast enough for real-time framerates. In
our tests, the AMD card could achieve real-time framerates even for a 1440p resolution while the Nvidia
RTX 4090 achieved this even for a 2160p (4k). The older and less powerful GPUs need more than 15ms for
path tracing alone at 1080p resolution. Together with our rasterization passes and other gameplay-relevant
processing and rendering done on the GPU, the total frame time for these GPUs exceeds 30ms. However,
reducing the resolution for indirect lighting and computing it for just one out of four pixels in a given frame
allowed these GPUs to consistently achieve real-time framerates as well.

Anno path tracing times by GPU
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Figure 4.4: Comparison of path tracing and total frame times in a typical Anno scene by GPU. This compares setups 2,
3, 4, 5 at 1080p using Direct3D.

Figure 4.5 compares GPU rendering times in various demanding Anno scenes. The scenes are displayed in
figure 4.6. In all scenes and viewpoints, path tracing dominates overall frame timings on the GPU. Timings
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for other relevant work on the GPU can be found in figure 4.7. The pass rasterizing primary hits into deferred
renderers’ gbuffers is called primary hits. The shadow pass rasterizes shadows from the directional light source
for vegetation and model instances not included in the TLAS by our culling mechanism. The findings can be
explained per scene:

Path tracing times in various scenes
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Figure 4.5: Total GPU timings of Anno in a variety of scenes and the portion of it required by the path tracing pipeline.
Detailed timings for other GPU work can be found in figure 4.7. Setup 3, Direct3D, 1080p.

Animated models City at sunset Tilted city

High above Forest Tilted forest

Figure 4.6: The scenes used for GPU timings in figures 4.5 and 4.7.

Animated models shows a city scene with a high number of animated units on the streets. The camera is
placed so close to the animated crowd that many of them get included in the TLAS by LiPaC. This
explains the measured time for the Build BLASes section in figure 4.7 being higher compared to all other
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GPU timings in various scenes
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Figure 4.7: GPU timings for non path tracing sections from figure 4.5. The primary hits and shadow passes rely on
rasterization.
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scenes. The high path tracing times can be explained by our method relying on BLASes updates for
animated units. This yields sub-optimal BLASes and slower intersection tests.

City at sunset shows a typical Anno city scene with the sun being close to the horizon. This influences the
ray direction of traced shadow rays. In the worst case, shadow rays will have to traverse almost the
entire scene. This explains the significantly higher path tracing times as well as the time needed to
rasterize model shadows.

Tilted city view shows a typical Anno city with the tilted camera looking more towards the horizon. With
this point of view, a larger portion of the scene, especially distant geometry, becomes visible. This leads
to a higher TLAS instance count which entails slightly higher TLAS building times.

High above shows a full Anno island with a big city, mountains, farm fields, and forests. The viewpoint is far
above the scene to include most of the island in view, much higher than allowed for the normal game
perspective. Due to the high number of visible model instances, TLAS building times are increased.
Otherwise, this viewpoint can be handled well. We would have expected no BLASes to be built in this
perspective. Unfortunately, our LiPaC implementation still causes some active-inactive cycles for unique
terrain-adjusted instances that require BLAS builds every couple of frames.

Forest represents a scene showing mainly trees, bushes, and grass viewed from above. Vegetation assets
exhibit high amounts of overdraw, therefore rasterization times are higher for such a vegetation-heavy
scene. We include this scene to evaluate our vegetation path tracing method.

Tilted forest view shows a forest scene with the camera tilted to look towards the horizon. In this perspective,
many vegetation instances with high amounts of overdraw have to be rasterized for primary hits as
well as directional shadows. This scene has by far the highest timings for the respective rasterization
passes. At the same time, the path tracing times are the lowest due to our vegetation heuristic and
completely ignoring vegetation in shadow rays. Furthermore, this point of view shows the sky which
does not require any path traced indirect lighting computations.

Figure 4.8 shows the importance of LiPaC to achieve these results. We compare our hit-feedback-based
approach with two simple alternative approaches: Including all instances of the scene into the TLAS (full
scene, no culling) or just including instances contained either in the frustum or in a radius around the camera
into the TLAS. For this test, the radius was 800 meters. The timings were gathered in the tilted city viewpoint
from figure 4.6, with many units roaming the streets. The scene has around 5000 running animations. The
time needed to animate the BLASes of all instances in the scene is prohibitively high for the simple approaches.
We do not rebuild all BLASes in each frame but only every 16th frame. In between, BLASes are updated
to keep build timings as low as possible. Without this optimization, the Animate BLASes section would be
around 5-10 times higher. But this approach explains the high variance in timings. Since animations are only
run inside or near the camera frustum, including instances in a radius around the camera does not decrease
the number of animated BLASes. It only helps with the number of instances in the TLAS, thus decreasing
TLAS building times. By leveraging light path hit feedback, LiPaC reduces the number of active instances, and
therefore TLAS building times significantly. In addition, only a small number of animated models, selected by
the number of encountered light paths, are included in the TLAS and have their BLAS updated in each frame.
This reduces the timings for BLAS updating by a factor close to 40. At the same time, gathering hit feedback
during path tracing slightly increases tracing times since it requires atomic operations.

To ensure a smooth experience while playing video games, frame time spikes have to be avoided. In a game
like Anno, these typically occur while the camera is moved through the scene. Our method lazily activates
instances and builds BLASes that are needed for indirect lighting of the scene. Thus, during camera movement,
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GPU timings with different culling strategies
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Figure 4.8: GPU runtime for an Anno city scene with many animated instances. Comparison between different TLAS
instance strategies. Setup 3, Direct3D, 1080p.

many BLASes get built and GPU buffers are updated. Figure 4.9 shows the timings for the most significant
CPU and GPU sections during camera movement. Frame timing spikes can be observed. In this regard, our
method leaves room for improvement. However, it can be argued that the spikes remain reasonably small, as
they do not extend timing spikes already observed for other parts of the game engine. Since GPU and CPU
work is executed in parallel, the timings do not necessarily sum up as the frame time is given by the maximum
of the CPU and GPU frame times. Additionally, some of the work on the CPU side can be parallelized as well.
The top graph shows the time needed for processing the command written out by the Process Hit Feedback
pass earlier. In this section, instances are activated or deactivated as requested by LiPaC. The handle appearing
instances (CPU) pass implements the approach described at the end of section 3.3.2: To avoid a delay until
instances appearing in the frustum are included in the TLAS, we activate all appearing instances in each frame
on the CPU side. The figure shows how this mechanism is not needed while moving the camera closer to
the city that was already visible, as shown by the first third of the graph. But it becomes useful when the
camera moves through the city. The spike for the top two graphs in the end is the moment the camera tilts
towards the horizon. Almost the entire city moves into the frustum at this point, leading to a high number
of activations on the CPU side. After a couple of frames, another spike for the BLAS command processing
task can be observed. This can be explained by a high number of processed commands for instances in the
distance that have not been activated by the CPU activation mechanism before. These instances get activated
after their associated hitboxes encounter a high number of light paths. The graph showing timings of the
Update Raytrace Buffers CPU section does not show concerning spikes, even though all newly activated or
deactivated instances as well as their entries in the geometry instance data buffer need to be updated. The
bottom graph shows the time needed to build BLASes in each frame. The CPU section contains the command
recording and batching of build commands while the GPU section executes the recorded commands. The
increased timings around frame number 50 can be explained by the camera viewpoint close to the ground.
In that case, many animated units roaming the street are activated in the TLAS and need BLAS updates or
rebuilds in each frame. Other GPU tasks for LiPaC such as assembling the TLAS instance buffer or processing
the hit feedback stayed well below 0.1ms for all setups and evaluated scenes.
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Figure 4.9: The most relevant acceleration structure management GPU and CPU timings while moving the camera
through a city scene. In its initial resting post, the camera is high above the city, looking down. Then, it moves down,
hovering close to a busy street. Afterward, it zooms slightly out and moves horizontally through the city. In the end,
the camera is tilted to look toward the horizon, its final resting pose. All this happens in less than ten seconds, as the
camera is moving quickly. Setup 2, Direct3D.

The worst case in terms of acceleration structure management is a camera jump leading to a cold start. In
an evaluation scenario, we had the camera jump from an empty view to the tilted city view from figure 4.6.
Our LiPaC latency mitigation mechanism then activates a large number of instances that newly appear in the
frustum. We could observe problematic frame timing spikes, up to 15ms across our testing setups. Games
that do not allow arbitrary camera jumps through the scene have to deal with this problem to a lesser extent
since the hit feedback based approach will keep the scene close to the camera active. However, when rotating
the camera in a wide, open world, similar issues might be encountered. While for games like Anno, such
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frame spikes could be acceptable directly after a camera jump, accepting the delay and disabling the proposed
approach for latency mitigation might be the preferred solution. In practice, we also limit the number of BLAS
handling commands we process on the CPU in each frame to keep an upper limit on runtime. Commands
that are not processed will just be written out in the following frames again. Future work could investigate a
prioritization of these commands, ensuring that the most important instances get activated and added to the
TLAS as quickly as possible even when just processing a low number of commands in each frame.
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Figure 4.10: Total GPU path trace timings in an Anno gameplay perspective with high vegetation coverage. The different
bars correspond to different permutations of optimizations that affect each other.
R: Using rasterization for primary hits.
V: Using the vegetation heuristic for indirect light detailed in section 3.4.
S: Sampling vegetation sun shadow from the shadow map instead of tracing shadow rays.
See figure 4.11 for timing heatmaps. Setup 3, Direct3D, 1080p.

Section 3.4 describes various optimizations to make path tracing of vegetation faster. Figure 4.10 shows
respective timings with different optimizations enabled compared to the ground truth. The corresponding
scene and timing heatmaps in figure 4.11 clearly show how vegetation is a bottleneck when no optimizations
are applied. With all optimizations enabled, it is handled just as efficiently as any other opaque geometry,
as we get rid of almost all anyhit shader invocations. Only for secondary rays on non scattered light paths
(i.e. E(S|T)+ light paths with the roughness of the respective specular or transmissive bounces being low) is
vegetation geometry traced with all required anyhit invocations.
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Figure 4.11: Path tracing timings of an Anno gameplay perspective with high vegetation coverage. See figure 4.10 for
comparisons of timings for the entire path tracing pass and an explanation of the labels. Setup 3, Direct3D, 1080p.
Top left: ground truth path traced image of the scene.
Top right: timings of the ground truth path traced image.
Middle left: using rasterization for all primary hits (R).
Middle right: using rasterization to render vegetation sun shadow (S).
Bottom left: using our vegetation heuristic for indirect lighting (V).
Bottom right: using all available optimizations (R+S+V).
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4.3 Memory Efficiency

Evaluation Method Memory consumption can be expected to be deterministic for our purposes. Therefore,
we just measure it once per test case for the evaluation of static scenes. In modern graphics APIs, allocating
memory for resources is handled by the application. We measure the sum of the sizes of the resources we
use, any internal or external fragmentation is not considered since they could be improved by using different
allocation strategies.

Memory consumption can be divided into three categories:

1. Memory that is needed by rasterization as well. This includes mesh buffers, textures, material information,
and render targets not used specifically for our path tracing technique.

2. Memory consumed by data structures inherently needed for hardware ray tracing methods. This memory
includes acceleration structures, the scratch buffer, temporary buffers for vertex transformation, and
buffers connecting ray tracing instances with materials and mesh information.

3. Memory consumed specifically by path tracing, especially the targets used for denoising.

Graphics memory can be further differentiated by usage. The working set memory sums up the memory sizes
of all used resources. But since large resources are sometimes only needed for specific operations, they can
be aliased, i.e. placed in the same memory as other resources with are only needed temporarily. In an ideal
aliasing scenario, where the aliased memory bottleneck is already in other passes of the frame, these resources
do not increase total memory consumption. In the context of ray tracing, the scratch buffer and the buffer
temporarily holding the transformed vertices for BLAS building can be aliased. Due to our various feedback
and streaming approaches, memory consumption is highly resolution dependent beyond just render targets.
We provide all numbers for a 1080p render resolution.

The Sponza scene (base mesh and curtains) with more than 5 million primitives and no mesh LODs consumes
380MB for BLASes on Setup 4 before compression. Memory consumption for TLAS and instance buffer stays
well below 1MB due to the low number of instances.

Graphics memory consumption for all ray tracing resources in Anno by GPU

0 20 40 60 80 100 120 140
Memory (MiB)

AMD RX 7900 XTX

Intel Arc A770

Nvidia RTX 2080

141.2

72.4

42.6

Figure 4.12: The bars contain the sum of all ray tracing specific memory resources. We compare Setup 2, 3, and 4 using
Direct3D. See figures 4.13 and 4.14 for more details on the memory consumption of individual resources in this scenario.

For typical video game assets, the presence of proper mesh LODs and reduced mesh complexity results in
reduced memory consumption, even though the rendered scenes are usually larger and include a high number
of instances. In the Sponza scene, all meshes are extremely detailed and need to be included in the TLAS for
almost all viewpoints. Thus, culling strategies do not help to reduce memory consumption in this scenario.
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To evaluate memory consumption in a state of the art game engine, we once again look into various scenes
from Anno 1800. Since acceleration structure memory consumption significantly varies between GPU vendors,
figure 4.12 gives an overview of total ray tracing memory consumption per vendor in the tilted city scene
shown in figure 4.6. We can see that memory consumption between the GPU vendors differs significantly.
How much memory individual ray tracing resources consume on the different GPUs is displayed in figure 4.13.
Finally, figure 4.14 shows the memory consumption of various additional ray tracing resources that show no
significant difference between GPUs. Note that the scratch buffer and the buffer temporarily holding the
transformed vertices for the BLAS building are initialized to be 8MB in size and extended if needed. This base
size which is independent from individual GPU requirements is needed for the efficient BLAS build batching
described in section 3.3 since all builds in a single batch need their own slice of these buffers.

Graphics memory consumption of specific ray tracing resources in Anno by GPU

0 10 20 30 40 50 60 70
Memory (MiB)

TLAS

Shared Mesh BLASes

Unique Mesh BLASes

Terrain BLASes

Scratch Buffer
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10.07

27.91

62.36

12.29

5.06

9.61

15.25

8.00

6.72

2.50

3.83

7.60

8.00

AMD RX 7900 XTX
Intel Arc A770
NVidia RTX 2080

Figure 4.13: The bars describe how much memory the individual resources or resource categories consume. “Unique
Mesh BLASes” describes BLASes that are not shared between instances because each instance needs unique per-vertex
transformation, e.g. for skinning or terrain adaptation. Memory consumption was captured in the same scenario as
figure 4.12.

To put these numbers into perspective, figure 4.15 provides an overview of the most important other categories
of graphics memory consumption. The figure has no claim to cover all graphics memory consumption. Anno
has many resources for specific gameplay-relevant features that are not relevant to our method. All except for
the last bar represent memory required by a rasterizing renderer as well. The bar for render targets does not
include any path tracing specific resources, as all of these resources are included in the last bar. Denoising
render targets consume the biggest portion of path tracing memory. We use the combined diffuse-specular-
denoising technique of the ReBLUR denoiser. At 1080p resolution, its working set includes 169MB but 97MB
of that memory is aliased. More details on ReBLUR memory consumption can be found in its documentation.

While different scenes and viewpoints cause different memory consumption due to different instance counts
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Graphics memory consumption of specific ray tracing resources in Anno that do not depend on GPU.

0 1 2 3 4 5 6 7 8 9
Memory (MiB)

Model Instance Buffer
Geometry Instance Buffer

Terrain Mesh Buffers

Transformed Vertex Buffer

TLAS Instance Buffer

5.41

3.00

6.68

8.00

2.00

Figure 4.14: Memory consumption of the shown resources appears to be independent of the GPU vendor. Memory
consumption was captured in the same scenario as figure 4.12.

Graphics memory consumption overview in Anno

0 100 200 300 400 500 600
Memory (MiB)

Animation Data
Mesh Buffers

Material Textures
Terrain Textures
Render Targets

Path tracing

80.2
137.2

560.4
459.1

333.8
243.8

Figure 4.15: Graphics memory consumption in Anno by category, captured in the same scenario as figure 4.12. We
observe these numbers to be almost independent from GPU vendors, up to a small percentage. Memory consumption of
ray tracing resources is not included since it heavily depends on the used GPU.

Ray tracing graphics memory consumption in different Anno scenes

0 25 50 75 100 125 150 175 200 225
Memory (MiB)

Animated models
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Tilted city view

High above
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129.1
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153.6

Figure 4.16: Graphics memory consumption for ray tracing resources for different Anno scenes and points of view. See
section 4.2 for a detailed explanation of the scenes. Setup 3 using Direct3D at 1080p.

and different sets of BLASes present in memory, no scene exceeded reasonable memory bounds. Figure 4.16
shows memory consumption for the scenes from figure 4.6. The highest memory consumption can be observed
for the camera perspective far above the ground. In this case, it is caused by a high number of active instances,
leading to high TLAS, instance buffer, and scratch buffer size. Even though low quality mesh LODs can be
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used in this perspective, a high number of shared BLASes have to be present in memory in this perspective.
Such a perspective has not been included in Anno games so far since it causes a rasterizing renderer to quickly
hit memory and performance limits as well.

In summary, with these numbers on graphics memory consumption, we can conclude that even large current
generation game scenes fit into the memory of currently available commodity hardware. Recent GPUs capable
of running real-time ray tracing techniques have at least 8GB of graphics memory available. Without our LiPaC
method, graphics memory consumption is significantly higher, see figure 4.17.

Graphics memory consumption with different scene culling strategies

0 50 100 150 200 250 300 350 400
Graphics Memory (MiB)
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33.80

6.57

18.04

96.01

Full scene
Frustum and radius
LiPaC (Ours)

Figure 4.17: GPU memory consumption for the Anno tilted city scene with many animated instances. Setup 3 using
Direct3D at 1080p. The “Frustum and radius” strategy includes all instances that are in the frustum or in a radius of
800 meters around the camera.

For CPU memory consumption, the biggest data structures for ray tracing are the model instance and geometry
instance buffers and their update and free lists. Even in the biggest Anno game scenes, the combined memory
consumption of these buffers on CPU side never exceeded 40MB. Other ray tracing data structures, such as
the hash map of shared BLASes, terrain instance data buffers, and various maintenance lists for compaction,
pending BLAS builds and LOD switches always stayed below 1MB. The CPU memory overhead of our method
is thus negligible in the context of current computer hardware.
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4.4 Visual Details

Path tracing has a significant impact on runtime performance and perceived smoothness of an interactive
renderer, even on the most capable hardware. However, in some contexts and for some games, visual
improvements are of greater importance.

The Sponza scene rendered by our path tracer can be seen in figure 1.1 and figure 4.1. Since large parts of the
scene are barely illuminated by direct light, significant visual improvements can be achieved with path tracing.
At the same time, exactly these lighting conditions show the limitations of our simple light transport method.
Figure 4.18 illustrates a scenario with extremely poor lighting conditions. Exposure was increased by a factor
of 1000 compared to what is needed in sun-lit parts of the scene. The image on the left shows the results
accumulated over 10 frames. Most samples do not accumulate any light at all. While denoising manages
to process that signal into somewhat coherent lighting of the scene in the middle picture, large-scale and
blobby noise artifacts start to appear. The right image shows the same scene with quick camera movement and
denoising. At the left edge of the image, significant lighting artifacts can be seen that would be unacceptable
in games. Many games do not show scenes with such poor lighting conditions. However, the visible artifacts
in such conditions could be significantly improved by extending our method with techniques such as radiance
caches [Gau22; Hal+21; Sta21], spatiotemporal path reuse [Ouy+21; Lin+22], or more advanced light
transport approaches [VG97].

No denoising, 10 spp With ReBLUR denoising Denoising and camera movement

Figure 4.18: Path tracing in an occluded corner of the Sponza scene.

Table 4.2 compares the rasterizing renderer in the Anno engine with our path tracing method. The first row
shows a big city scene with additional vegetation in the streets. In shadowed regions, the lighting becomes
much more realistic and the image gains a new sense of depth not present in the rasterized image. This effect
becomes even more apparent in the forest scene depicted in the second row. Since the sun in that specific scene
is low behind a mountain, most of the scene lies in shadow. Without any proper indirect lighting information
on the left, it becomes hard to “read” the forest. Trees clump together and can barely be visually separated
from bushes and grass. With path tracing, “understanding” the scene becomes easier. Path tracing does not
just produce more visually appealing images. In some cases, it allows the human eye to get an improved
understanding of scenes, geometry, and materials compared to images with incorrect lighting. The third and
fourth rows of table 4.2 show selected assets at a closer distance. The sandy scene in the third row illustrates
the impact of GI well. While the shadowed houses in the rasterized image have a blue tint, they look well
integrated in the more warmly shaded scene in the path traced image. Finally, the path traced bank asset in
the fourth row exhibits an increased sense of depth not only for the area behind the columns in the bottom
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Rasterized Path traced (ours)

Table 4.2: Comparison of a rasterizing renderer with our path tracer in various Anno game scenes.
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but also for the lion head and facade decoration at the top. The specular highlights added by path tracing on
the golden surfaces make the material more recognizable and believable compared to the dull shading on the
left. Such details do not only increase the overall visual fidelity of the game but may also provide additional
value. For instance, they could increase player gratification after having achieved building this landmark. The
potential of increased immersion and player satisfaction as well as gameplay advantages by easier readability
of the scene make these results promising.

Rasterized (with SSAO) Ray traced AO Fully path traced

Figure 4.19: Comparison of an Anno city scene at sunset with different indirect lighting strategies.

The most significant impact on visual quality in Anno scenes was achieved by correct ambient occlusion.
Figure 4.19 shows an Anno city scene at sunset with just SSAO on the left, ray traced AO in the middle, and
finally full GI by path tracing on the right. While just adding ray traced AO adds significant visual details and
depth, the image in the middle appears too dark. Especially the trees and streets on the right appear better
integrated with the additional indirect light. Figure 4.20 shows a close-up of a city block, comparing ray
traced AO and path tracing. While the difference is subtle, the shadowed regions on the right are shaded more
warmly by the indirect sunlight with path tracing. One can also observe additional specular details on the
path traced image, rendering the roof in the top-right of the image more readable. However, since computing
ray traced AO is significantly cheaper than full GI and path tracing, it is a good trade-off to consider for games
like Anno.

As described in section 3.4, we approximate indirect lighting from vegetation to significantly decrease tracing
runtime by avoiding many anyhit shader invocations. Figure 4.21 shows a comparison of this approximation
with ground truth. The final composited image in the top row shows almost no significant difference. However,
the comparison of denoised indirect diffuse lighting in the second row presents us with much less detail in the
grass-filled streets when using our heuristic. For trees, no significant difference can observed. To investigate
how well our approximation works, table 4.3 evaluates the difference in indirect diffuse lighting for various
vegetation assets. While the method works well for all trees and bushes we tested, it shows problems for grass
assets. The heuristics we describe in section 3.4 approximate vegetation assets as bounding box volumes. This
volume approach does not work well for grass, as its individual grass blades drive occlusion much more than
their combined volume. A better heuristic could, for instance, bake the ambient occlusion a grass asset throws
onto the ground in an offline step and then use this information to guide ray skipping.
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Ray traced AO Fully path traced

Figure 4.20: Comparison of an Anno closeup rendered with just ray traced AO and full path tracing.

Anyhit shaders (ground truth) Stochastic vegetation skipping (ours)

Figure 4.21: Comparison between ground truth and our vegetation skipping heuristic for indirect lighting. While the
first row shows the composited results, the second row illustrates the denoised indirect diffuse lighting. Differences can
be observed for the grassy ground.
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Anyhit shaders (ground truth) Stochastic vegetation skipping (ours)

Table 4.3: Comparison of ground truth with our vegetation skipping method for diffuse radiance after denoising.
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5 Conclusion

The methods presented in this thesis open the door for path tracing in real-time renderers. This facilitates
photo-realistic graphics in future computer games. GPU runtime of path tracing at full resolution is still a
concern and limited to only the most capable of current generation commodity hardware. However, future
GPUs can be expected to change this and allow real-time path tracing on a wide range of hardware. For now,
computing indirect lighting in lower resolutions on less capable hardware can present a good alternative.
Another solution is to rely on established real-time ray tracing techniques that do not aim to solve the entire
rendering equation. These techniques can be combined with our methods as well.

We have presented LiPaC, a scene culling method that is guided by light path feedback and therefore suitable
for ray tracing techniques of all kinds. Our evaluations have shown significant advantages for acceleration
structure build times and memory consumption, with only a small impact on tracing performance.

For ray tracing techniques dealing with diffuse or otherwise highly scattered indirect lighting, our stochastic
vegetation ray skipping approach provides significant speedup at the cost of reduced indirect lighting quality.
The performance improvements shown by our evaluation make this a good trade-off. Real-time path tracing of
vegetation-heavy scenes would not have been possible even on the most capable current generation hardware
without it.

5.1 Limitations

The indirect lighting differences for the vegetation ray skipping heuristic might be too significant for some
contexts. In rendering contexts outside of video games, the results from section 4.4 might be unacceptable.
We adjusted our heuristic parameters for trees since they have the largest impact on indirect lighting. Better
results might be achieved with parameters depending on the specific asset but fine-tuning them manually is
sub-optimal.

Our LiPaC method has a potential latency of multiple frames when objects first appear in the reflection of
mirror-like surfaces. In practice, during normal camera movement, this was usually not noticeable since the
bouncing of rays through the scene already activates instances in proximity to the currently visible surfaces.
However, when the camera jumps to a new position and directly faces a mirror, this latency can be noticed.

For vegetation and instances culled by LiPaC, we rely on rasterization for shadows. This only works for
traditional video game light sources and cannot provide good approximations of shadows for light coming
from emissive surfaces. To render scenes that rely heavily on such light sources, our method has to be adjusted.

The presented path tracing method focuses on surface interaction and does not include volumetric light
interactions such as fog, smoke, or light traveling through water. Volumetric effects are costly to implement
into real-time path tracing and approximations are needed for games.
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5.2 Future Work

More complex spatial acceleration structures, such as quadtrees [Sam84] or BVHs [Mei+21] for hitboxes in our
light path feedback method could provide performance improvements for large scenes. Using other bounding
volumes instead of just AABBs for omitted model instances might avoid unnecessary instance activation and
activation-deactivation cycles we observed due to the coarse approximative nature of AABBs. Multiple other
approaches could be built upon this method. Handling light sources in a similar manner, only ever considering
light sources in active regions of the scene might be possible with some minor adjustments to the method. We
also suspect that better heuristics for the activation of scene regions and individual instances can be found.
More sophisticated scene analysis on the CPU to activate instances likely reachable by light paths before
rendering the scene could allow us to mitigate the latency visible in appearing mirrors.

Our method exclusively builds upon backward path tracing. This causes some caustics to appear noisy to
a degree that denoising cannot properly process into a visually appealing image, especially under motion.
Integrating photon mapping [Jen96] approaches into our method would improve this issue. Bidirectional
path tracing and photon mapping would interact with LiPaC, likely requiring adjustments to our method.

The evaluated heuristic for vegetation ray skipping could also be improved. Heuristics utilizing pre-computed
scattering profiles or a low-resolution voxelized density approximation of the asset would likely deliver better
results, especially for grass assets. This could be useful to visualize vegetation for which bounding box
heuristics cannot capture the complex geometrical shape that should be preserved for indirect lighting. The
performance and memory consumption differences between our vegetation ray skipping heuristic and opacity
micromaps [FO23] should be evaluated.
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Acronyms

AABB axis-aligned bounding box. 31, 37, 39, 63, 64

AO ambient occlusion. 7, 8, 14, 59, 60, 64

API application programming interface. 30, 42, 43, 53, 64

BLAS bottom-level acceleration structure. 17–21, 23, 25–33, 35, 36, 45, 48, 49, 51, 53–56, 64

BRDF bidirectional reflectance distribution function. 12, 13, 64

BSDF bidirectional scattering distribution function. 10, 13, 64

BVH bounding volume hierarchy. 31, 63, 64

CPU central processing unit. 19, 27, 29, 30, 33–35, 41, 43, 49–51, 56, 63, 64

fps frames per second. 7, 8, 64

GI global illumination. 8, 9, 14, 15, 57, 59, 64

GPU graphics processing unit. 4, 7, 8, 11, 15–17, 19, 21–36, 39, 41–46, 49–51, 53–56, 62, 64

IBL image-based lighting. 14, 64

LiPaC light path guided culling. 4, 20, 23, 24, 29–31, 46, 48–50, 56, 62–64

LOD level of detail. 20, 24–27, 29, 30, 41, 42, 53, 55, 56, 64

MIS multiple importance sampling. 12, 64

NEE next event estimation. 11, 13, 64

NRD Nvidia ray tracing denoiser. 23, 64

PBR physically based rendering. 14, 64

PDF probability density function. 11, 12, 64

PSR primary surface replacement. 16, 27, 28, 45, 64

spp samples per pixel. 13, 64
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SSAO screen space ambient occlusion. 14, 59, 64

TAA temporal anti-aliasing. 16, 21, 64

TLAS top-level acceleration structure. 17–19, 23, 25, 26, 30–33, 35, 45, 46, 48, 49, 51, 53, 55, 64

TLSF two-level segregate fit. 26, 64
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